Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantum-bit encoding converter

Abstract

From telecommunications to computing architectures, the realm of classical information hinges on converter technology to enable the exchange of data between digital and analogue formats, a process now routinely performed across a variety of electronic devices. A similar exigency also exists in quantum information technology, where different frameworks are being developed for quantum computing, communication and sensing. Thus, efficient quantum interconnects are a major need to bring these parallel approaches together and scale up quantum information systems. So far, however, the conversion between different optical quantum-bit encodings has remained challenging due to the difficulty of preserving fragile quantum superpositions and the demanding requirements for postselection-free implementations. Here we demonstrate such a conversion of quantum information between the two main paradigms, namely discrete- and continuous-variable qubits. We certify the protocol on a complete set of single-photon qubits, successfully converting them to cat-state qubits with fidelities exceeding the classical limit. Our result demonstrates an essential tool for enabling interconnected quantum devices and architectures with enhanced versatility and scalability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An optical encoding converter for quantum interconnects.
Fig. 2: Experimental set-up.
Fig. 3: Qubit characterization before and after conversion.
Fig. 4: Characterization of the conversion process.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  MATH  ADS  Google Scholar 

  3. Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    Article  ADS  Google Scholar 

  4. Pirandola, S. & Braunstein, S. L. Unite to build a quantum internet. Nature 532, 169–171 (2016).

    Article  ADS  Google Scholar 

  5. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  ADS  Google Scholar 

  6. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  MATH  ADS  Google Scholar 

  7. O’Brien, J. L., Furusawa, A. & Vucković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  8. Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  9. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015).

    Article  ADS  Google Scholar 

  10. Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P. & Furusawa, A. Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015).

    Article  Google Scholar 

  11. Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).

    Article  ADS  Google Scholar 

  12. Lee, S. W. & Jeong, J. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2012).

    Article  ADS  Google Scholar 

  13. Lvovsky, A. I. et al. Production and applications of non-Gaussian quantum states of light. Preprint at https://arxiv.org/abs/2006.16985 (2020).

  14. Jeong, H., Bae, S. & Choi, S. Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15, 913–927 (2016).

    Article  MATH  ADS  Google Scholar 

  15. Morin, O. et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon. 8, 570–574 (2014).

    Article  ADS  Google Scholar 

  16. Jeong, H. et al. Generation of hybrid entanglement of light. Nat. Photon. 8, 564–569 (2014).

    Article  ADS  Google Scholar 

  17. Huang, K. et al. Engineering optical hybrid entanglement between discrete- and continuous-variable states. New J. Phys. 21, 083033 (2019).

    Article  ADS  Google Scholar 

  18. Ulanov, A. E., Sychev, D., Pushkina, A. A., Fedorov, I. A. & Lvovsky, A. I. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017).

    Article  ADS  Google Scholar 

  19. Le Jeannic, H., Cavaillès, A., Raskop, J., Huang, K. & Laurat, J. Remote preparation of arbitrary continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5, 1012–1015 (2018).

    Article  ADS  Google Scholar 

  20. Cavaillès, A. et al. Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous- and discrete-variable entanglement of light. Phys. Rev. Lett. 121, 170403 (2018).

    Article  ADS  Google Scholar 

  21. Guccione, G. et al. Connecting heterogeneous quantum networks by hybrid entanglement swapping. Sci. Adv. 6, eaba4508 (2020).

    Article  ADS  Google Scholar 

  22. Sychev, D. V. et al. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun. 9, 3672 (2018).

    Article  ADS  Google Scholar 

  23. Le Jeannic, H. et al. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. Opt. Lett. 41, 5341–5344 (2016).

    Article  ADS  Google Scholar 

  24. Neergaard-Nielsen, J. S. et al. Optical continuous-variable qubit. Phys. Rev. Lett. 105, 053602 (2010).

    Article  ADS  Google Scholar 

  25. Lvovksy, A. I. & Raymer, M. G. Continuous-variable optical quantum state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

    Article  ADS  Google Scholar 

  26. Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994).

    Article  MATH  ADS  Google Scholar 

  27. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  MATH  ADS  Google Scholar 

  28. Bagan, E. et al. Optimal full estimation of qubit mixed states. Phys. Rev. A 73, 032301 (2006).

    Article  ADS  Google Scholar 

  29. Riebe, M. et al. Quantum teleportation with atoms: quantum process tomography. New J. Phys. 9, 211 (2007).

    Article  ADS  Google Scholar 

  30. Yoshikawa, J.-i, Makino, K., Kurata, S., van Loock, P. & Furusawa, A. Creation, storage and on-demand release of optical quantum states with a negative Wigner function. Phys. Rev. X 3, 041028 (2013).

    Google Scholar 

  31. Bouillard, M., Boucher, G., Ferrer Ortas, J., Pointard, B. & Tualle-Brouri, R. Quantum storage of single-photon and two-photon Fock states with an all-optical quantum memory. Phys. Rev. Lett. 122, 210501 (2019).

    Article  ADS  Google Scholar 

  32. Wang, Y. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13, 346–351 (2019).

    Article  ADS  Google Scholar 

  33. Cao, M., Hoffet, F., Qiu, S., Sheremet, A. S. & Laurat, J. Efficient reversible entanglement transfer between light and quantum memories. Optica 7, 1440–1444 (2020).

    Article  ADS  Google Scholar 

  34. Huang, K. et al. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resources. Phys. Rev. Lett. 115, 023602 (2015).

    Article  ADS  Google Scholar 

  35. Sychev, D. et al. Enlargement of optical Schrödinger’s cat states. Nat. Photon. 11, 379–382 (2017).

    Article  ADS  Google Scholar 

  36. Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).

    Article  ADS  Google Scholar 

  37. Basso Basset, F. et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 123, 160501 (2019).

    Article  ADS  Google Scholar 

  38. Kwon, H. & Jeong, H. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A. 91, 012340 (2015).

    Article  ADS  Google Scholar 

  39. Gouzien, E., Brunel, F., Tanzilli, S. & D’Auria, V. Scheme for the generation of hybrid entanglement between time-bin and wavelike encodings. Phys. Rev. A 102, 012603 (2020).

    Article  ADS  Google Scholar 

  40. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P. & Furusawa, A. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the QuantERA grant ShoQC, by the French National Research Agency (HyLight project ANR-17-CE30-0006, ShoQC project 19-QUAN-0005-05) and by the Horizon 2020 Research and Innovation Programme via the Twinning project NonGauss (951737). G.G. was supported by the European Union (Marie Curie Fellowship HELIOS IF-749213) and T.D. by Region Ile-de-France in the framework of DIM SIRTEQ. J.L. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

T.D. and B.E.A. performed the experiment, developed the implementation techniques and analysed the data. G.G., A.C. and H.L.J. contributed to the preparation of the setup. J.L. designed the research and supervised the project. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Julien Laurat.

Ethics declarations

Competing interests

T.D. and J.L. are co-founders and shareholders of Welinq. A patent (FR2114170) is pending for the present invention, with T.D., B.E.A., G.G., A.C. and J.L. as inventors. H.L.J. declares no competing interests.

Peer review

Peer review information

Nature Photonics thanks Hyunseok Jeong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–4 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darras, T., Asenbeck, B.E., Guccione, G. et al. A quantum-bit encoding converter. Nat. Photon. 17, 165–170 (2023). https://doi.org/10.1038/s41566-022-01117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01117-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing