Abstract
Reconfigurable optical metasurfaces are rapidly emerging as a major frontier in photonics research, development and commercialization. They promise compact, lightweight and energy-efficient reconfigurable optical systems with unprecedented performance and functions that can be dynamically defined on-demand. Compared with their passive counterparts, the reconfiguration capacity also poses challenges in scalable control, manufacturing and control toward their practical deployment. This Review aims to survey the state of the art of reconfigurable metasurface technologies and their applications, using spaceborne remote sensing, active beam steering and light field displays as examples, while highlighting key research advances that are essential to enabling their transition from laboratory curiosity to commercial reality.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).
Salary, M. M. & Mosallaei, H. Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication. IEEE Trans. Antennas Propag. 68, 1628–1642 (2020).
Liu, Y. et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 9, 855–863 (2020).
Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 12, 1225 (2021).
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2020).
Gyeongtae, Kim et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays. Nanoscale 14, 4380–4410 (2022).
Julian, M. N., Williams, C., Borg, S., Bartram, S. & Kim, H. J. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 7, 746–754 (2020).
Wang, X., Díaz-Rubio, A., Li, H., Tretyakov, S. A. & Alù, A. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl. 13, 044040 (2020).
Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).
Weiss, A. et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics 9, 605–612 (2022).
Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).
Bosch, M., Shcherbakov, M. R., Fan, Z. & Shvets, G. Polarization states synthesizer based on a thermo-optic dielectric metasurface. J. Appl. Phys. 126, 073102 (2019).
Kaissner, R. et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv. 7, eabd9450 (2021).
Xia, S. et al. Enhancement of the Faraday effect and magneto-optical figure of merit in all-dielectric metasurfaces. ACS Photonics 9, 1240–1247 (2022).
Tripathi, A. et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics 8, 1206–1213 (2021).
Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).
Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018).
Waters, R. F., Hobson, P. A., MacDonald, K. F. & Zheludev, N. I. Optically switchable photonic metasurfaces. Appl. Phys. Lett. 107, 081102 (2015).
Colburn, S., Zhan, A. & Majumdar, A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica 5, 825–831 (2018).
Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).
Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).
He, Q., Sun, S. & Zhou, L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019).
Zahra, S. et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front. Phys. 8, 593411 (2021).
Hu, J., Bandyopadhyay, S., Liu, Y. H. & Shao, L. Y. A review on metasurface: from principle to smart metadevices. Front. Phys. 8, 586087 (2021).
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).
Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).
Shalaginov, M. Y. et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 20, 7429–7437 (2020).
Lin, Z. et al. End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics 10, 1177–1187 (2021).
Arya, G. et al. End-to-end optimization of metasurfaces for imaging with compressed sensing. Preprint at https://arxiv.org/abs/2201.12348 (2022).
Shalaginov, M. Y. et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics 9, 3505–3534 (2020).
Williams, C., Hong, N., Julian, M., Borg, S. & Kim, H. J. Tunable mid-wave infrared Fabry–Perot bandpass filters using phase-change GeSbTe. Opt. Express 28, 10583–10594 (2020).
Rais-Zadeh, M. & Jafari, M. Zero-static-power phase-change optical modulator. Opt. Lett. 41, 1177–1180 (2016).
Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).
Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Kim, S. I. et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics 11, 2719–2726 (2022).
Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013).
Lume Pad 3D Lightfield Tablet (Leia Inc., 2022); https://www.leiainc.com/
Hua, J. et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci. Appl. 10, 213 (2021).
Hua, J., Qiao, W. & Chen, L. Recent advances in planar optics-based glasses-free 3D displays. Front. Nanotechnol. 4, 829011 (2022).
Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 14, 1900235 (2020).
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).
Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).
Hu, T. et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9, 823–830 (2020).
Verschuuren, M. A., Knight, M. W., Megens, M. & Polman, A. Nanoscale spatial limitations of large-area substrate conformal imprint lithography. Nanotechnology 30, 345301 (2019).
Thureja, P. et al. Array-level inverse design of beam steering active metasurfaces. ACS Nano 14, 15042–15055 (2020).
Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Active metasurfaces: lighting the path to commercial success. Preprint at https://arxiv.org/abs/2205.14193 (2022).
Raeker, B. O. et al. All-dielectric meta-optics for high-efficiency independent amplitude and phase manipulation. Adv. Photonics Res. 3, 2100285 (2022).
Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).
Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).
Zhang, Y. et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118, 210501 (2021).
Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624–631 (2020).
Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Lett. 18, 7801–7808 (2018).
An, S. et al. Deep neural network enabled active metasurface embedded design. Nanophotonics https://doi.org/10.1515/nanoph-2022-0152 (2022).
Wen, D. & Crozier, K. B. Metasurfaces 2.0: laser-integrated and with vector field control. APL Photonics 6, 080902 (2021).
Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).
Kobayashi, F., Shikama, K., Miyata, M., Nemoto, N. & Hashimoto, T. Full-color-sorting metalenses for high-sensitivity image sensors. Optica 8, 1596–1604 (2021).
Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).
Campbell, S. D. et al. Review of numerical optimization techniques for meta-device design [Invited]. Opt. Mater. Express 9, 1842–1863 (2019).
Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).
Frame, J. D., Green, N. G. & Fang, X. Modified Maxwell Garnett model for hysteresis in phase change materials. Opt. Mater. Express 8, 1988–1996 (2018).
Meyer, S., Tan, Z. Y. & Chigrin, D. N. Multiphysics simulations of adaptive metasurfaces at the meta-atom length scale. Nanophotonics 9, 675–681 (2020).
Martin-Monier, L. et al. Nanoscale controlled oxidation of liquid metals for stretchable electronics and photonics. Adv. Funct. Mater. 31, 2006711 (2021).
Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).
Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics 6, 1345–1350 (2019).
Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).
Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).
Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).
Yu, Y. et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613–3618 (2017).
Li, M., Biswas, S., Hail, C. U. & Atwater, H. A. Refractive index modulation in monolayer molybdenum diselenide. Nano Lett. 21, 7602–7608 (2021).
Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).
Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 8, 472 (2017).
Horie, Y., Arbabi, A., Arbabi, E., Kamali, S. M. & Faraon, A. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics 5, 1711–1717 (2018).
Lewi, T., Butakov, N. A. & Schuller, J. A. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics 8, 331–338 (2018).
Benea-Chelmus, I. C. et al. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun. 12, 5928 (2021).
Tanemura, T., Zhang, J., Kosugi, Y., Ogasawara, M. & Nakano, Y. Metasurface high-speed modulators using electro-optic polymer. Proc. SPIE 11692, 1169208 (2021).
Karvounis, A. et al. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv. Opt. Mater. 8, 2000623 (2020).
Karvounis, A., Vogler-Neuling, V. V. & Grange, R. 95 MHz bandwidth electro-optic metasurfaces based on barium titanate nanocrystals. In Proc. Conference on Lasers and Electro-Optics (eds Kang, J. et al.) FTh4K.5 (Optica Publishing Group, 2021); https://doi.org/10.1364/cleo_qels.2021.fth4k.5
Li, J., Wu, S. T., Brugioni, S., Meucci, R. & Faetti, S. Infrared refractive indices of liquid crystals. J. Appl. Phys. 97, 073501 (2005).
Buchnev, O., Podoliak, N., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater. 3, 674–679 (2015).
Kowerdziej, R., Wróbel, J. & Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 9, 20367 (2019).
Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).
Wan, C. et al. On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Ann. Phys. 531, 1900188 (2019).
Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).
Kang, T. et al. Large-scale, power-efficient Au/VO2 active metasurfaces for ultrafast optical modulation. Nanophotonics 10, 909–918 (2020).
Kim, H. J., Sohn, J., Hong, N., Williams, C. & Humphreys, W. PCM-net: a refractive index database of chalcogenide phase change materials for tunable nanophotonic device modelling. J. Phys. Photonics 3, 024008 (2021).
Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).
Meng, J. et al. Electrical programmable multi-level non-volatile photonic random-access memory. Preprint at https://arxiv.org/abs/2203.13337 (2022).
Moon, J.-S. et al. Reconfigurable infrared spectral imaging with phase change materials. Proc. SPIE 10982, 109820X (2019).
Greef, R., Kalaji, M. & Peter, L. M. Ellipsometric studies of polyaniline growth and redox cycling. Faraday Discuss. Chem. Soc. 88, 277–289 (1989).
Xiong, K. et al. Video speed switching of plasmonic structural colors with high contrast and superior lifetime. Adv. Mater. 33, 2103217 (2021).
Li, Z. et al. Correlated perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 28, 9117–9125 (2016).
Huang, M. et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, 5030 (2019).
Li, Y., Van De Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).
Eaves-Rathert, J. et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett. 22, 1626–1632 (2022).
Hopmann, E. & Elezzabi, A. Y. Plasmochromic nanocavity dynamic light color switching. Nano Lett. 20, 1876–1882 (2020).
Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).
Palm, K. J., Murray, J. B., Narayan, T. C. & Munday, J. N. Dynamic optical properties of metal hydrides. ACS Photonics 5, 4677–4686 (2018).
Tajima, K., Yamada, Y., Bao, S., Okada, M. & Yoshimura, K. Flexible all-solid-state switchable mirror on plastic sheet. Appl. Phys. Lett. 92, 041912 (2008).
Li, J. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018).
Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).
Li, J., Yu, P., Zhang, S. & Liu, N. A reusable metasurface template. Nano Lett. 20, 6845–6851 (2020).
Hu, J. et al. Lattice-resonance metalenses for fully reconfigurable imaging. ACS Nano 13, 4613–4620 (2019).
Bi, L. et al. Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices. Materials 6, 5094–5117 (2013).
Kazlou, A., Chekhov, A. L., Stognij, A. I., Razdolski, I. & Stupakiewicz, A. Surface plasmon-enhanced photomagnetic excitation of spin dynamics in Au/YIG:Co magneto-plasmonic crystals. ACS Photonics 8, 2197–2202 (2021).
Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).
Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).
Wu, Y., Kang, L., Bao, H. & Werner, D. H. Exploiting topological properties of Mie-resonance-based hybrid metasurfaces for ultrafast switching of light polarization. ACS Photonics 7, 2362–2373 (2020).
Acknowledgements
This work was sponsored by the National Science Foundation under award number 2132929, Defense Advanced Research Projects Agency Defense Sciences Office Program: EXTREME Optics and Imaging (EXTREME) under agreement number HR00111720029, the National Institute of Aerospace, and Lockheed Martin Corporation Internal Research and Development. We would like to thank S. An and W. Humphreys for creation of the graphics, F. Yang and X. Qiu for assistance with optical/thermal modelling, as well as M. Julian, C. Williams, X. Sun, X. Fang and L. Bi for helpful technical discussions and assistance with development of the outline. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Yuanmu Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gu, T., Kim, H.J., Rivero-Baleine, C. et al. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023). https://doi.org/10.1038/s41566-022-01099-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-022-01099-4