Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reconfigurable metasurfaces towards commercial success

Abstract

Reconfigurable optical metasurfaces are rapidly emerging as a major frontier in photonics research, development and commercialization. They promise compact, lightweight and energy-efficient reconfigurable optical systems with unprecedented performance and functions that can be dynamically defined on-demand. Compared with their passive counterparts, the reconfiguration capacity also poses challenges in scalable control, manufacturing and control toward their practical deployment. This Review aims to survey the state of the art of reconfigurable metasurface technologies and their applications, using spaceborne remote sensing, active beam steering and light field displays as examples, while highlighting key research advances that are essential to enabling their transition from laboratory curiosity to commercial reality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms for active tuning of reconfigurable metasurfaces.
Fig. 2: Tunable metasurface filter for aerospace applications.
Fig. 3: Reconfigurable metasurfaces for beam steering.
Fig. 4: Metasurface-based 3D display.

Similar content being viewed by others

References

  1. Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

    Google Scholar 

  2. Salary, M. M. & Mosallaei, H. Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication. IEEE Trans. Antennas Propag. 68, 1628–1642 (2020).

    ADS  Google Scholar 

  3. Liu, Y. et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 9, 855–863 (2020).

    Google Scholar 

  4. Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 12, 1225 (2021).

    ADS  Google Scholar 

  5. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2020).

    ADS  Google Scholar 

  6. Gyeongtae, Kim et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays. Nanoscale 14, 4380–4410 (2022).

    Google Scholar 

  7. Julian, M. N., Williams, C., Borg, S., Bartram, S. & Kim, H. J. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 7, 746–754 (2020).

    ADS  Google Scholar 

  8. Wang, X., Díaz-Rubio, A., Li, H., Tretyakov, S. A. & Alù, A. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl. 13, 044040 (2020).

    ADS  Google Scholar 

  9. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Google Scholar 

  10. Weiss, A. et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics 9, 605–612 (2022).

    Google Scholar 

  11. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    ADS  Google Scholar 

  12. Bosch, M., Shcherbakov, M. R., Fan, Z. & Shvets, G. Polarization states synthesizer based on a thermo-optic dielectric metasurface. J. Appl. Phys. 126, 073102 (2019).

    ADS  Google Scholar 

  13. Kaissner, R. et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv. 7, eabd9450 (2021).

    ADS  Google Scholar 

  14. Xia, S. et al. Enhancement of the Faraday effect and magneto-optical figure of merit in all-dielectric metasurfaces. ACS Photonics 9, 1240–1247 (2022).

    Google Scholar 

  15. Tripathi, A. et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics 8, 1206–1213 (2021).

    Google Scholar 

  16. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    ADS  Google Scholar 

  17. Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018).

    Google Scholar 

  18. Waters, R. F., Hobson, P. A., MacDonald, K. F. & Zheludev, N. I. Optically switchable photonic metasurfaces. Appl. Phys. Lett. 107, 081102 (2015).

    ADS  Google Scholar 

  19. Colburn, S., Zhan, A. & Majumdar, A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica 5, 825–831 (2018).

    ADS  Google Scholar 

  20. Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    ADS  Google Scholar 

  21. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    ADS  Google Scholar 

  22. He, Q., Sun, S. & Zhou, L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019).

    Google Scholar 

  23. Zahra, S. et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front. Phys. 8, 593411 (2021).

    MathSciNet  Google Scholar 

  24. Hu, J., Bandyopadhyay, S., Liu, Y. H. & Shao, L. Y. A review on metasurface: from principle to smart metadevices. Front. Phys. 8, 586087 (2021).

    Google Scholar 

  25. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    ADS  Google Scholar 

  26. Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).

    ADS  Google Scholar 

  27. Shalaginov, M. Y. et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 20, 7429–7437 (2020).

    ADS  Google Scholar 

  28. Lin, Z. et al. End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics 10, 1177–1187 (2021).

    Google Scholar 

  29. Arya, G. et al. End-to-end optimization of metasurfaces for imaging with compressed sensing. Preprint at https://arxiv.org/abs/2201.12348 (2022).

  30. Shalaginov, M. Y. et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics 9, 3505–3534 (2020).

    Google Scholar 

  31. Williams, C., Hong, N., Julian, M., Borg, S. & Kim, H. J. Tunable mid-wave infrared Fabry–Perot bandpass filters using phase-change GeSbTe. Opt. Express 28, 10583–10594 (2020).

    ADS  Google Scholar 

  32. Rais-Zadeh, M. & Jafari, M. Zero-static-power phase-change optical modulator. Opt. Lett. 41, 1177–1180 (2016).

    ADS  Google Scholar 

  33. Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    ADS  Google Scholar 

  34. Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    ADS  Google Scholar 

  35. Kim, S. I. et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics 11, 2719–2726 (2022).

    Google Scholar 

  36. Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013).

    ADS  Google Scholar 

  37. Lume Pad 3D Lightfield Tablet (Leia Inc., 2022); https://www.leiainc.com/

  38. Hua, J. et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci. Appl. 10, 213 (2021).

    ADS  Google Scholar 

  39. Hua, J., Qiao, W. & Chen, L. Recent advances in planar optics-based glasses-free 3D displays. Front. Nanotechnol. 4, 829011 (2022).

    Google Scholar 

  40. Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 14, 1900235 (2020).

    ADS  Google Scholar 

  41. Joo, W. J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    Google Scholar 

  42. Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    ADS  Google Scholar 

  43. Hu, T. et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9, 823–830 (2020).

    Google Scholar 

  44. Verschuuren, M. A., Knight, M. W., Megens, M. & Polman, A. Nanoscale spatial limitations of large-area substrate conformal imprint lithography. Nanotechnology 30, 345301 (2019).

    Google Scholar 

  45. Thureja, P. et al. Array-level inverse design of beam steering active metasurfaces. ACS Nano 14, 15042–15055 (2020).

    Google Scholar 

  46. Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Active metasurfaces: lighting the path to commercial success. Preprint at https://arxiv.org/abs/2205.14193 (2022).

  47. Raeker, B. O. et al. All-dielectric meta-optics for high-efficiency independent amplitude and phase manipulation. Adv. Photonics Res. 3, 2100285 (2022).

    Google Scholar 

  48. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    ADS  Google Scholar 

  49. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    ADS  Google Scholar 

  50. Zhang, Y. et al. Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118, 210501 (2021).

    ADS  Google Scholar 

  51. Presutti, F. & Monticone, F. Focusing on bandwidth: achromatic metalens limits. Optica 7, 624–631 (2020).

    ADS  Google Scholar 

  52. Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Lett. 18, 7801–7808 (2018).

    ADS  Google Scholar 

  53. An, S. et al. Deep neural network enabled active metasurface embedded design. Nanophotonics https://doi.org/10.1515/nanoph-2022-0152 (2022).

  54. Wen, D. & Crozier, K. B. Metasurfaces 2.0: laser-integrated and with vector field control. APL Photonics 6, 080902 (2021).

    ADS  Google Scholar 

  55. Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    ADS  Google Scholar 

  56. Kobayashi, F., Shikama, K., Miyata, M., Nemoto, N. & Hashimoto, T. Full-color-sorting metalenses for high-sensitivity image sensors. Optica 8, 1596–1604 (2021).

    ADS  Google Scholar 

  57. Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).

    ADS  Google Scholar 

  58. Campbell, S. D. et al. Review of numerical optimization techniques for meta-device design [Invited]. Opt. Mater. Express 9, 1842–1863 (2019).

    ADS  Google Scholar 

  59. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    ADS  Google Scholar 

  60. Frame, J. D., Green, N. G. & Fang, X. Modified Maxwell Garnett model for hysteresis in phase change materials. Opt. Mater. Express 8, 1988–1996 (2018).

    ADS  Google Scholar 

  61. Meyer, S., Tan, Z. Y. & Chigrin, D. N. Multiphysics simulations of adaptive metasurfaces at the meta-atom length scale. Nanophotonics 9, 675–681 (2020).

    Google Scholar 

  62. Martin-Monier, L. et al. Nanoscale controlled oxidation of liquid metals for stretchable electronics and photonics. Adv. Funct. Mater. 31, 2006711 (2021).

    Google Scholar 

  63. Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    ADS  Google Scholar 

  64. Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics 6, 1345–1350 (2019).

    Google Scholar 

  65. Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    ADS  Google Scholar 

  66. Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    ADS  Google Scholar 

  67. Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

    ADS  Google Scholar 

  68. Yu, Y. et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613–3618 (2017).

    ADS  Google Scholar 

  69. Li, M., Biswas, S., Hail, C. U. & Atwater, H. A. Refractive index modulation in monolayer molybdenum diselenide. Nano Lett. 21, 7602–7608 (2021).

    ADS  Google Scholar 

  70. Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

    ADS  Google Scholar 

  71. Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 8, 472 (2017).

    ADS  Google Scholar 

  72. Horie, Y., Arbabi, A., Arbabi, E., Kamali, S. M. & Faraon, A. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics 5, 1711–1717 (2018).

    Google Scholar 

  73. Lewi, T., Butakov, N. A. & Schuller, J. A. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics 8, 331–338 (2018).

    Google Scholar 

  74. Benea-Chelmus, I. C. et al. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun. 12, 5928 (2021).

    ADS  Google Scholar 

  75. Tanemura, T., Zhang, J., Kosugi, Y., Ogasawara, M. & Nakano, Y. Metasurface high-speed modulators using electro-optic polymer. Proc. SPIE 11692, 1169208 (2021).

    Google Scholar 

  76. Karvounis, A. et al. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv. Opt. Mater. 8, 2000623 (2020).

    Google Scholar 

  77. Karvounis, A., Vogler-Neuling, V. V. & Grange, R. 95 MHz bandwidth electro-optic metasurfaces based on barium titanate nanocrystals. In Proc. Conference on Lasers and Electro-Optics (eds Kang, J. et al.) FTh4K.5 (Optica Publishing Group, 2021); https://doi.org/10.1364/cleo_qels.2021.fth4k.5

  78. Li, J., Wu, S. T., Brugioni, S., Meucci, R. & Faetti, S. Infrared refractive indices of liquid crystals. J. Appl. Phys. 97, 073501 (2005).

    ADS  Google Scholar 

  79. Buchnev, O., Podoliak, N., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater. 3, 674–679 (2015).

    Google Scholar 

  80. Kowerdziej, R., Wróbel, J. & Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 9, 20367 (2019).

    ADS  Google Scholar 

  81. Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).

    Google Scholar 

  82. Wan, C. et al. On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Ann. Phys. 531, 1900188 (2019).

    Google Scholar 

  83. Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    ADS  Google Scholar 

  84. Kang, T. et al. Large-scale, power-efficient Au/VO2 active metasurfaces for ultrafast optical modulation. Nanophotonics 10, 909–918 (2020).

    Google Scholar 

  85. Kim, H. J., Sohn, J., Hong, N., Williams, C. & Humphreys, W. PCM-net: a refractive index database of chalcogenide phase change materials for tunable nanophotonic device modelling. J. Phys. Photonics 3, 024008 (2021).

    ADS  Google Scholar 

  86. Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).

    ADS  Google Scholar 

  87. Meng, J. et al. Electrical programmable multi-level non-volatile photonic random-access memory. Preprint at https://arxiv.org/abs/2203.13337 (2022).

  88. Moon, J.-S. et al. Reconfigurable infrared spectral imaging with phase change materials. Proc. SPIE 10982, 109820X (2019).

    Google Scholar 

  89. Greef, R., Kalaji, M. & Peter, L. M. Ellipsometric studies of polyaniline growth and redox cycling. Faraday Discuss. Chem. Soc. 88, 277–289 (1989).

    Google Scholar 

  90. Xiong, K. et al. Video speed switching of plasmonic structural colors with high contrast and superior lifetime. Adv. Mater. 33, 2103217 (2021).

    Google Scholar 

  91. Li, Z. et al. Correlated perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 28, 9117–9125 (2016).

    ADS  Google Scholar 

  92. Huang, M. et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, 5030 (2019).

    ADS  Google Scholar 

  93. Li, Y., Van De Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).

    ADS  Google Scholar 

  94. Eaves-Rathert, J. et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett. 22, 1626–1632 (2022).

    ADS  Google Scholar 

  95. Hopmann, E. & Elezzabi, A. Y. Plasmochromic nanocavity dynamic light color switching. Nano Lett. 20, 1876–1882 (2020).

    ADS  Google Scholar 

  96. Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).

    Google Scholar 

  97. Palm, K. J., Murray, J. B., Narayan, T. C. & Munday, J. N. Dynamic optical properties of metal hydrides. ACS Photonics 5, 4677–4686 (2018).

    Google Scholar 

  98. Tajima, K., Yamada, Y., Bao, S., Okada, M. & Yoshimura, K. Flexible all-solid-state switchable mirror on plastic sheet. Appl. Phys. Lett. 92, 041912 (2008).

    ADS  Google Scholar 

  99. Li, J. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018).

    ADS  Google Scholar 

  100. Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).

    ADS  Google Scholar 

  101. Li, J., Yu, P., Zhang, S. & Liu, N. A reusable metasurface template. Nano Lett. 20, 6845–6851 (2020).

    ADS  Google Scholar 

  102. Hu, J. et al. Lattice-resonance metalenses for fully reconfigurable imaging. ACS Nano 13, 4613–4620 (2019).

    Google Scholar 

  103. Bi, L. et al. Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices. Materials 6, 5094–5117 (2013).

    ADS  Google Scholar 

  104. Kazlou, A., Chekhov, A. L., Stognij, A. I., Razdolski, I. & Stupakiewicz, A. Surface plasmon-enhanced photomagnetic excitation of spin dynamics in Au/YIG:Co magneto-plasmonic crystals. ACS Photonics 8, 2197–2202 (2021).

    Google Scholar 

  105. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Google Scholar 

  106. Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).

    ADS  Google Scholar 

  107. Wu, Y., Kang, L., Bao, H. & Werner, D. H. Exploiting topological properties of Mie-resonance-based hybrid metasurfaces for ultrafast switching of light polarization. ACS Photonics 7, 2362–2373 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Science Foundation under award number 2132929, Defense Advanced Research Projects Agency Defense Sciences Office Program: EXTREME Optics and Imaging (EXTREME) under agreement number HR00111720029, the National Institute of Aerospace, and Lockheed Martin Corporation Internal Research and Development. We would like to thank S. An and W. Humphreys for creation of the graphics, F. Yang and X. Qiu for assistance with optical/thermal modelling, as well as M. Julian, C. Williams, X. Sun, X. Fang and L. Bi for helpful technical discussions and assistance with development of the outline. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Gu, Hyun Jung Kim, Clara Rivero-Baleine or Juejun Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Yuanmu Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Kim, H.J., Rivero-Baleine, C. et al. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023). https://doi.org/10.1038/s41566-022-01099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01099-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing