Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mirror symmetric on-chip frequency circulation of light

Abstract

Integrated circulators and isolators are important for developing on-chip optical technologies such as laser cavities, communication systems and quantum information processors. These devices seem to inherently require mirror symmetry breaking to separate backwards from forwards propagation, and thus existing implementations rely on magnetic materials or interactions driven by propagating waves. By contrast to past works, we exhibit a mirror-symmetric non-reciprocal device that comprises three coupled photonic resonators implemented in thin-film lithium niobate. Applying radiofrequency modulation, we drive conversion between the frequency eigenmodes of this system. We measure nearly 40 dB of isolation for approximately 75 mW of radiofrequency power near 1,550 nm. We simultaneously generate non-reciprocal conversion between all of the eigenmodes to demonstrate circulation. Mirror-symmetric circulation simplifies the fabrication and operation of non-reciprocal integrated devices. Finally, we consider applications of such on-chip isolators and circulators, such as full-duplex isolation within a single waveguide.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure and resonant system.
Fig. 2: Isolation versus microwave phase condition Δϕ = 2ϕ1 − ϕ2.
Fig. 3: Experiment characterization scheme.
Fig. 4: Isolation versus microwave power.

Data availability

The data comprising Fig. 4 and Supplementary Fig. 8 are available on Zenodo at https://doi.org/10.5281/zenodo.6537345. Additional data generated and analysed in this study are available from the corresponding author on reasonable request.

References

  1. Wang, J., Herrmann, J. F., Witmer, J. D., Safavi-Naeini, A. H. & Fan, S. Photonic modal circulator using temporal refractive-index modulation with spatial inversion symmetry. Phys. Rev. Lett. 126, 193901 (2021).

    Article  ADS  Google Scholar 

  2. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  Google Scholar 

  3. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  4. Srinivasan, K. & Stadler, B. J. Magneto-optical materials and designs for integrated TE-and TM-mode planar waveguide isolators: a review. Opt. Mater. Express 8, 3307–3318 (2018).

    Article  ADS  Google Scholar 

  5. Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).

    Article  Google Scholar 

  6. Yan, W. et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 7, 1555–1562 (2020).

    Article  ADS  Google Scholar 

  7. Sobu, Y., Shoji, Y., Sakurai, K. & Mizumoto, T. GaInAsP/InP MZI waveguide optical isolator integrated with spot size converter. Opt. Express 21, 15373–15381 (2013).

    Article  ADS  Google Scholar 

  8. Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    Article  ADS  Google Scholar 

  9. Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article  ADS  Google Scholar 

  10. Kim, S., Sohn, D. B., Peterson, C. W. & Bahl, G. On-chip optical non-reciprocity through a synthetic hall effect for photons. APL Photon. 6, 011301 (2021).

    Article  ADS  Google Scholar 

  11. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  12. Ruesink, F., Miri, M.-A., Alu, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  13. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  14. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  15. Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 1–6 (2015).

    ADS  Google Scholar 

  16. Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

    Article  ADS  Google Scholar 

  17. Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    Article  ADS  Google Scholar 

  18. Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    Article  ADS  Google Scholar 

  19. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  20. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  21. Doerr, C. R., Dupuis, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

    Article  ADS  Google Scholar 

  22. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  23. Dostart, N., Gevorgyan, H., Onural, D. & Popović, M. A. Optical isolation using microring modulators. Opt. Lett. 46, 460–463 (2021).

    Article  ADS  Google Scholar 

  24. Weis, R. S. & Gaylord, T. K. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

  25. McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737–1745 (2020).

    Article  ADS  Google Scholar 

  26. Jiang, H. et al. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 42, 3267–3270 (2017).

    Article  ADS  Google Scholar 

  27. Xu, Y. et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express 29, 5497–5504 (2021).

    Article  ADS  Google Scholar 

  28. Shams-Ansari, A. et al. Probing the limits of optical loss in ion-sliced thin-film lithium niobate. In Conference on Lasers and Electro-Optics STh4J.4 (Optical Society of America, 2021); http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2021-STh4J.4

  29. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

  30. Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

    Article  ADS  Google Scholar 

  31. Sarabalis, C. J., McKenna, T. P., Patel, R. N., Van Laer, R. & Safavi-Naeini, A. H. Acousto-optic modulation in lithium niobate on sapphire. APL Photon. 5, 086104 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.F.H. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (grant no. DGE-1656518). V.A. acknowledges support by the Stanford Q-FARM Bloch Fellowship Program. We acknowledge the support of an AFOSR MURI project (grant no. FA9550-18-1-0379) and the National Science Foundation under award no. ECCS-1820938. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award no. ECCS-2026822. Work was performed in part at the nano@stanford laboratories, which are supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award no. ECCS-1542152. We would like to thank W. Jiang and C. J. Sarabalis for insightful and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.F.H. fabricated the device. J.F.H. and V.A. led the experimental effort. J.W. developed the device operating theory and characterized theoretical device performance. J.F.H, J.D.W. and J.W. determined physical device designs. J.D.W. assisted in early experimentation. A.H.S.-N and S.F. provided experimental and theoretical guidance and support for this experiment.

Corresponding authors

Correspondence to Jason F. Herrmann or Amir H. Safavi-Naeini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Analysis and Discussion, Sections 1–8, Figs. 1–8 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrmann, J.F., Ansari, V., Wang, J. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022). https://doi.org/10.1038/s41566-022-01026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01026-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing