Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Super-Planckian emission cannot really be ‘thermal’

A heat-powered emitter can sometimes exceed the Planck thermal-emission limit. We clarify when such super-Planckian emission is possible, arguing that far-field super-Planckian emission requires a distribution of energy that is not consistent with a unique temperature, and therefore the process should not be called ‘thermal emission’.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Thought experiment that explains Kirchhoff’s law of thermal radiation.
Fig. 2: Subwavelength thermal emitters.
Fig. 3: Non-equilibrium heat-powered emission.

References

  1. Planck, M. Ann. Phys. 309, 553–563 (1901).

    Article  Google Scholar 

  2. Kirchhoff, G. Lond. Edinb. Dubl. Phil. Mag. J. Sci. https://doi.org/10.1080/14786446008642901 (1860).

    Article  Google Scholar 

  3. Baranov, D. G. et al. Nat. Mater. 18, 920–930 (2019).

    ADS  Article  Google Scholar 

  4. Liu, X. et al. Phys. Rev. Lett. 107, 045901 (2011).

    ADS  Article  Google Scholar 

  5. Greffet, J.-J. et al. Nature 416, 61–64 (2002).

    ADS  Article  Google Scholar 

  6. Inoue, T., De Zoysa, M., Asano, T. & Noda, S. Nat. Mater. 13, 928–931 (2014).

    ADS  Article  Google Scholar 

  7. Nefedov, I. S. & Melnikov, L. A. Appl. Phys. Lett. 105, 161902 (2014).

    ADS  Article  Google Scholar 

  8. Hsieh, M.-L., Lin, S.-Y., Bur, J. A. & Shenoi, R. Nanotechnology 26, 234002 (2015).

    ADS  Article  Google Scholar 

  9. Lin, S.-Y. et al. Sci Rep. 10, 5209 (2020).

    ADS  Article  Google Scholar 

  10. Yang, J. et al. Nat. Commun. 9, 4033 (2018).

    ADS  Article  Google Scholar 

  11. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Nature 515, 540–544 (2014).

    ADS  Article  Google Scholar 

  12. Ilic, O. et al. Nat. Nanotechnol. 11, 320–324 (2016).

    ADS  Article  Google Scholar 

  13. Trupke, T. et al. Appl. Phys. Lett. 84, 1997 (2004).

    ADS  Article  Google Scholar 

  14. Luo, C., Narayanaswamy, A., Chen, G. & Joannopoulos, J. D. Phys. Rev. Lett. 93, 213905 (2004).

    ADS  Article  Google Scholar 

  15. Rousseau, E. et al. Nat. Photon. 3, 514–517 (2009).

    ADS  Article  Google Scholar 

  16. Kim, K. et al. Nature 528, 387–391 (2015).

    ADS  Article  Google Scholar 

  17. Yu, Z. et al. Nat. Commun. 4, 1730 (2013).

    ADS  Article  Google Scholar 

  18. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  Google Scholar 

  19. Fernández-Hurtado, V., Fernández-Domínguez, A. I., Feist, J., García-Vidal, F. J. & Cuevas, J. C. Phys. Rev. B 97, 045408 (2018).

    ADS  Article  Google Scholar 

  20. Golyk, V. A., Krüger, M. & Kardar, M. Phys. Rev. E 85, 046603 (2012).

    ADS  Article  Google Scholar 

  21. Biehs, S.-A. & Ben-Abdallah, P. Phys. Rev. B 93, 165405 (2016).

    ADS  Article  Google Scholar 

  22. Ingvarsson, S., Klein, L., Au, Y.-Y., Lacey, J. A. & Hamann, H. F. Opt. Express 15, 11249 (2007).

    ADS  Article  Google Scholar 

  23. Thompson, D. et al. Nature 561, 216–221 (2018).

    ADS  Article  Google Scholar 

  24. Maslovski, S. I., Simovski, C. R. & Tretyakov, S. A. New J. Phys. 18, 013034 (2016).

    ADS  Article  Google Scholar 

  25. Fan, S. Joule 1, 264–273 (2017).

    Article  Google Scholar 

  26. Greffet, J.-J., Bouchon, P., Brucoli, G. & Marquier, F. Phys. Rev. X 8, 021008 (2018).

    Google Scholar 

  27. Khandekar, C., Yang, L., Rodriguez, A. W. & Jacob, Z. Opt. Express 28, 2045 (2020).

    ADS  Article  Google Scholar 

  28. Sakat, E. et al. Optica 5, 175 (2018).

    ADS  Article  Google Scholar 

  29. Xiao, Y., Wan, C., Shahsafi, A., Salman, J. & Kats, M. A. ACS Photonics 7, 853–860 (2020).

    Article  Google Scholar 

  30. Xiao, Y., Charipar, N. A., Salman, J., Piqué, A. & Kats, M. A. Light: Sci. Appl. 8, 51 (2019).

    ADS  Article  Google Scholar 

  31. Khandekar, C., Pick, A., Johnson, S. G. & Rodriguez, A. W. Phys. Rev. B 91, 115406 (2015).

    ADS  Article  Google Scholar 

  32. Khandekar, C., Lin, Z. & Rodriguez, A. W. Appl. Phys. Lett. 106, 151109 (2015).

    ADS  Article  Google Scholar 

  33. Zhu, L. & Fan, S. Phys. Rev. B 90, 220301 (2014).

    ADS  Article  Google Scholar 

  34. Hadad, Y., Soric, J. C. & Alu, A. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    ADS  Article  Google Scholar 

  35. Yu, Z., Raman, A. & Fan, S. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    ADS  Article  Google Scholar 

  36. Molesky, S., Jin, W., Venkataram, P. S. & Rodriguez, A. W. Phys. Rev. Lett. 123, 257401 (2019).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

M.A.K. and Y.X. acknowledge support from the National Science Foundation (NSF) (grant no. 1750341) and the Office of Naval Research (N00014-20-1-2297). M.S. acknowledges support from the NSF (grant no. 2108288) and the Welch Foundation (A-1886). We thank D. Seletskiy, whose live session at the SPIE Digital Forum helped us to crystallize some key questions, and J. Choy, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Kats.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Takashi Asano, Jacob Khurgin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Supplementary Figures 1-5, Supplementary Discussion

Source data

Source Data Fig. 1

Fig. 1b source data.

Source Data Fig. 2

Figs. 2b and 2d source data.

Source Data Fig. 3

Figs. 3d and 3e source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Sheldon, M. & Kats, M.A. Super-Planckian emission cannot really be ‘thermal’. Nat. Photon. 16, 397–401 (2022). https://doi.org/10.1038/s41566-022-01005-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01005-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing