Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ferroelectric multilevel non-volatile photonic phase shifter

An Author Correction to this article was published on 20 June 2022

This article has been updated

Abstract

A novel class of programmable integrated photonic circuits has emerged over the past years, strongly driven by approaches to tackle unsolved computing problems in the optical domain. Photonic neuromorphic and quantum computing are examples of optical systems implemented in complex photonic circuits, which are reconfigured before and during operation. However, a key building block to enable efficient reconfigurable optical network architectures is still missing: a non-volatile optical phase shifter. Here we demonstrate such an element—compatible with silicon photonics—based on the monolithic integration of BaTiO3 thin films with silicon waveguides. By manipulating ferroelectric domains in BaTiO3 with electrical control signals, we achieve analogue and non-volatile optical phase tuning with no absorption changes. We demonstrate an eight-level long-term-stable photonic device with non-destructive optical readout and switching energy as low as 4.6 pJ. With our results, an analogue non-volatile photonic element is added to the integrated photonics toolbox, enabling a new generation of power-efficient programmable photonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Device geomerty, cross-section and general concept.
Fig. 2: The effect of pulse parameters on controlling the non-volatile photonic state.
Fig. 3: Domain dynamics.
Fig. 4: Characteristics of the device for non-volatile applications.

Data availability

The data analysis to support the plots in this Article are explained in the Supplementary Information. Raw data are available from the corresponding author on reasonable request.

Change history

References

  1. Trimberger, S. M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology. In Proc. IEEE Vol. 103, 318–331 (IEEE, 2015).

  2. Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    ADS  Google Scholar 

  3. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    ADS  Google Scholar 

  4. Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 1–9 (2020).

    ADS  Google Scholar 

  5. Pérez-López, D., López, A., DasMahapatra, P. & Capmany, J. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  6. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    ADS  Google Scholar 

  7. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    ADS  Google Scholar 

  8. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS  Google Scholar 

  9. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    ADS  Google Scholar 

  10. Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 1–6 (2014).

    Google Scholar 

  11. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS  Google Scholar 

  12. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    ADS  Google Scholar 

  13. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    ADS  Google Scholar 

  14. Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 1–9 (2017).

    ADS  Google Scholar 

  15. Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018).

    Google Scholar 

  16. Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018).

    ADS  Google Scholar 

  17. Wade, M. et al. TeraPHY: a chiplet technology for low-power, high-bandwidth in-package optical I/O. IEEE Micro 40, 63–71 (2020).

    Google Scholar 

  18. Giewont, K. et al. 300-mm Monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

    Google Scholar 

  19. Parra, J., Olivares, I., Brimont, A. & Sanchis, P. Toward nonvolatile switching in silicon photonic devices. Laser Photon. Rev. 15, 1–18 (2021).

    Google Scholar 

  20. Atabaki, A. H., Hosseini, E. S., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic micro-heaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312–18323 (2010).

    ADS  Google Scholar 

  21. Jacques, M. et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 27, 10456 (2019).

    ADS  Google Scholar 

  22. Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38, 733–735 (2013).

    ADS  Google Scholar 

  23. Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487 (2014).

    ADS  Google Scholar 

  24. Stegmaier, M., Ríos, C., Bhaskaran, H., Wright, C. D. & Pernice, W. H. P. Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks. Adv. Opt. Mater. 5, 1–6 (2017).

    Google Scholar 

  25. Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS  Google Scholar 

  26. Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, 1–6 (2017).

    Google Scholar 

  27. Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, 1–10 (2019).

    Google Scholar 

  28. Sattari, H., Toros, A., Graziosi, T. & Niels, Q. Bistable silicon photonics MEMS switches. In Proc. SPIE 10931, MOEMS and Miniaturized Systems XVIII 109310D (SPIE, 2019).

  29. Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020).

  30. Quack, N. et al. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56, 8200916 (2020).

  31. Fang, Z., Chen, R., Zheng, J. & Majumdar, A. Non-volatile reconfigurable silicon photonics based on phase-change materials. IEEE J. Sel. Top. Quantum Electron. 28, 1–17 (2021).

    Google Scholar 

  32. Abel, S. et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4, 1671 (2013).

    ADS  Google Scholar 

  33. Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett. 14, 1419–1425 (2014).

    ADS  Google Scholar 

  34. Eltes, F. et al. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light. Technol. 37, 1456–1462 (2019).

    ADS  Google Scholar 

  35. Ortmann, J. E. et al. Ultra-low-power tuning in hybrid barium titanate-silicon nitride electro-optic devices on silicon. ACS Photon. 6, 2677–2684 (2019).

    Google Scholar 

  36. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2018).

  37. Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

  38. Vaithyanathan, V. et al. c-axis oriented epitaxial BaTiO3 films on (001) Si. J. Appl. Phys. 100, 1–9 (2006).

    Google Scholar 

  39. Nordlander, J. et al. Ferroelectric domain architecture and poling of BaTiO3 on Si. Phys. Rev. Mater. 4, 1–7 (2020).

    Google Scholar 

  40. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).

    ADS  Google Scholar 

  41. Merz, W. J. Switching time in ferroelectric BaTiO3 and Its dependence on crystal thickness. J. Appl. Phys. 27, 938–943 (1956).

    ADS  Google Scholar 

  42. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

  43. Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    ADS  Google Scholar 

  44. Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).

    ADS  Google Scholar 

  45. Kormondy, K. J. et al. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics. Nanotechnology 28, 075706 (2017).

    ADS  Google Scholar 

  46. Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Japan 31, 506–510 (1971).

    ADS  Google Scholar 

  47. Ishibashi, Y. & Orihara, H. A theory of D–E hysteresis loop—application of Avrami model. Integr. Ferroelectr. 9, 57–61 (1995).

    Google Scholar 

  48. Avrami, M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940).

    ADS  Google Scholar 

  49. Sharma, P., McQuaid, R. G. P., McGilly, L. J., Gregg, J. M. & Gruverman, A. Nanoscale dynamics of superdomain boundaries in single-crystal BaTiO3 lamellae. Adv. Mater. 25, 1323–1330 (2013).

    Google Scholar 

  50. Wieder, H. H. Activation field and coercivity of ferroelectric barium titanate. J. Appl. Phys. 28, 367–369 (1957).

    ADS  Google Scholar 

  51. Stadler, H. L. & Zachmanidis, P. J. Nucleation and growth of ferroelectric domains in BaTiO3 at fields from 2 to 450 kVcm. J. Appl. Phys. 34, 3255–3260 (1963).

    ADS  Google Scholar 

  52. Boyn, S. et al. High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl. Phys. Lett. 104, 1–4 (2014).

    Google Scholar 

  53. Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1–6 (2019).

    Google Scholar 

  54. Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 1–8 (2020).

    ADS  Google Scholar 

  55. Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 1–9 (2019).

    ADS  Google Scholar 

  56. Gan, S. X. et al. Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window. Opt. Mater. (Amst). 120, 111450 (2021).

    Google Scholar 

  57. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    ADS  Google Scholar 

  58. Fang, Z. et al. Non‐volatile reconfigurable integrated photonics enabled by broadband low‐loss phase change material. Adv. Opt. Mater. 9, 2002049 (2021).

    Google Scholar 

  59. Delaney, M., Zeimpekis, I., Lawson, D., Hewak, D. W. & Muskens, O. L. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 30, 1–10 (2020).

    Google Scholar 

  60. Delaney, M. et al. Non-volatile programmable silicon photonics using an ultralow loss Sb2Se3 phase change material. Sci. Adv. 7, 1–8 (2021).

  61. Receveur, R. A. M., Marxer, C. R., Woering, R., Larik, V. C. M. H. & de Rooij, N. F. Laterally moving bistable MEMS DC switch for biomedical applications. J. Microelectromech. Syst. 14, 1089–1098 (2005).

    Google Scholar 

Download references

Acknowledgements

This work received funding from the European Commission under grant agreement no. H2020-ICT-2017-1-780997 (plaCMOS) to F.E., H.S., B.J.O., J.F. and S.A., nos. H2020-ICT-2019-2-871330 (Neoteric) and H2020-ICT-2019-2-871658 (Nebula) to B.J.O., and no. H2020-ICT-2019-2-871391 (PlasmoniAC) to D.C. Support from the National Science Foundation under grant no. IRES-1358111 and financial support by Armasuisse Science and Technology to J.G.-K. J.G.-K. acknowledges academic support from P. Hoffmann.

Author information

Authors and Affiliations

Authors

Contributions

J.G.-K. performed electro-optical measurements with the support of S.A. and F.E.. D.S. developed the basis code for running the experiments. F.E., S.A. and J.F. fabricated and structurally characterized the epitaxial BTO and STO layers. S.A., D.C. and F.E. fabricated the devices. J.G.-K performed data analysis with the support of S.A., F.E. and P.S. J.G.-K., F.E., P.S. and S.A. wrote the manuscript with the support of all authors. S.A. and J.F. defined the concept of non-volatile optical switching. All authors discussed the results.

Corresponding author

Correspondence to Jacqueline Geler-Kremer.

Ethics declarations

Competing interests

F.E., J.F. and S.A. are involved in commercially developing barium titanate photonic technologies at Lumiphase AG.

Peer review

Peer review information

Nature Photonics thanks José Capmany and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15 and Figs. 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geler-Kremer, J., Eltes, F., Stark, P. et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat. Photon. 16, 491–497 (2022). https://doi.org/10.1038/s41566-022-01003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01003-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing