Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress on table-top isolated attosecond light sources

Abstract

Research on isolated attosecond pulses (IAPs) based on high-order harmonic generation changed substantially around 2010. Before then, the Ti:sapphire laser was the de facto standard as the driving light source, so the cutoff energy was limited to ~100 eV. After 2010, the mid-infrared optical parametric amplifier became the mainstream driving source. The shortest pulse width of an IAP has reached ~50 as, an intensity over a gigawatt has been achieved, and the photon energy has been extended to 500 eV. However, owing to the low flux of IAPs, the use of IAPs is still limited in terms of applications. Here we focus on the vigorous efforts in the past decade to extend the performance of IAPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron trajectories and attochirp.
Fig. 2: Dipole approximation limits.
Fig. 3: Generation and measurement of a 53-as IAP.
Fig. 4: Apparatus for IR–visible–UV field synthesis and the subcycle light transient.
Fig. 5: Terawatt-class optical waveform synthesizer, synthesized intensity and HHG spectra.
Fig. 6: Pump–probe measurements and snapshots of hole dynamics.

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  2. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  5. Li, X. F., L’Huillier, A., Ferray, M., Lompre, L. A. & Mainfray, G. Multiple harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).

    Article  ADS  Google Scholar 

  6. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  7. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  8. Lewenstein, M., Balcou, P. H., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser pulses. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  9. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  10. Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photon. 8, 178–186 (2014).

    Article  ADS  Google Scholar 

  11. Takahashi, E. J., Kanai, T., Ishikawa, K. L., Nabekawa, Y. & Midorikawa, K. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media. Phys. Rev. Lett. 101, 253901 (2008).

    Article  ADS  Google Scholar 

  12. Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).

    Article  ADS  Google Scholar 

  13. Chipperfield, L. E., Robinson, J. S., Tish, J. W. G. & Marangos, J. P. Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period. Phys. Rev. Lett. 102, 063003 (2009).

    Article  ADS  Google Scholar 

  14. Fu, Y. et al. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Commun. Phys. 3, 92 (2020).

    Article  Google Scholar 

  15. Elu, U. et al. High average power and single-cycle pulse from mid-IR optical parametric chirped pulse amplifier. Optica 4, 1024–1029 (2017).

    Article  ADS  Google Scholar 

  16. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 196–203 (2014).

    Article  ADS  Google Scholar 

  17. Chang, Z., Corkum, P. B. & Leone, S. R. Attosecond optics and technology: progress to date and future prospects [Invited]. J. Opt. Soc. Am. B 33, 1081–1097 (2016).

    Article  ADS  Google Scholar 

  18. Takahashi, E., Nabekawa, Y., Otsuka, T., Obara, M. & Midorikawa, K. Generation of highly coherent submicrojoule soft X-rays by high-order harmonics. Phys. Rev. A 66, 021802 (2002).

    Article  ADS  Google Scholar 

  19. Takahashi, E. J., Hasegawa, H. & Midorikawa, K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27, 1920–1922 (2002).

    Article  ADS  Google Scholar 

  20. Gaumnitz, T. et al. Streaking of 43-attosecond soft X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Exp. 25, 27506–27518 (2017).

    Article  Google Scholar 

  21. Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    Article  ADS  Google Scholar 

  22. Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

    Article  ADS  Google Scholar 

  23. Teichmann, S. M., Silva, F., Cousin, S. L., Hemmer, M. & Biegert, J. 0.5-keV soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2015).

    Article  ADS  Google Scholar 

  24. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  25. Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

    Article  ADS  Google Scholar 

  26. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  27. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    Article  ADS  Google Scholar 

  28. Schultz, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  ADS  Google Scholar 

  29. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 535, 916–919 (2016).

    Article  ADS  Google Scholar 

  30. Ren, X. et al. Attosecond light sources in the water window. J. Opt. 20, 023001 (2018).

    Article  ADS  Google Scholar 

  31. Biegert, J. et al. Attosecond technology(ies) and science. J. Phys. B 54, 070201 (2021).

    Article  Google Scholar 

  32. Shan, B. & Chang, Z. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804 (2001).

    Article  ADS  Google Scholar 

  33. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  34. Doumy, G. et al. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102, 093002 (2009).

    Article  ADS  Google Scholar 

  35. Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nat. Phys. 4, 386–389 (2008).

    Article  Google Scholar 

  36. Reiss, H. R. Limit on tunneling theories of strong field ionization. Phys. Rev. Lett. 47, 043002 (2008).

    Article  ADS  Google Scholar 

  37. Ludwig, A. et al. Breakdown of the dipole approximation in strong field ionization. Phys. Rev. Lett. 47, 243001 (2014).

    Article  ADS  Google Scholar 

  38. Wolter, B. et al. Strong-field physics with mid-IR fields. Phys Rev. X 5, 021034 (2015).

    Google Scholar 

  39. Baudisch, M., Hemmer, M., Pires, H. & Biegert, J. Performance of MgO:PPLN, KTA and KNbO3 for mid-wave infrared broad band parametric amplification at high average power. Opt. Lett. 39, 5802–5805 (2014).

    Article  ADS  Google Scholar 

  40. Baltuska, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).

    Article  ADS  Google Scholar 

  41. Ishii, N. et al. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses. Nat. Commun. 5, 3331 (2014).

    Article  ADS  Google Scholar 

  42. Silva, F. et al. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun. 6, 6611 (2014).

    Article  ADS  Google Scholar 

  43. Zhang, Q., Takahashi, E. J., Mücke, O. D., Lu, P. & Midorikawa, K. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Exp. 19, 7190–7212 (2011).

    Article  Google Scholar 

  44. Fu, Y., Takahashi, E. J. & Midorikawa, K. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Opt. Lett. 40, 5082–5085 (2015).

    Article  ADS  Google Scholar 

  45. Fu, Y., Midorikawa, K. & Takahashi, E. J. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Sci. Rep. 8, 7692 (2018).

    Article  ADS  Google Scholar 

  46. Nishimura, K., Suda, A., Midorikawa, K. & Takahashi, E. J. Apparatus for generating nanojoule-class water-window high-order harmonics. Rev. Sci. Instrum. 93, 063001 (2021).

    Article  Google Scholar 

  47. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    Article  ADS  Google Scholar 

  48. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  49. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  50. Saito, N. et al. Attosecond streaking measurement of extreme ultraviolet pulses using long-wavelength electric field. Sci. Rep. 6, 35594 (2016).

    Article  ADS  Google Scholar 

  51. Chini, M., Gilbertson, S., Khan, S. D. & Chang, Z. Characterizing ultrabroadband attosecond lasers. Opt. Exp. 18, 13006–13016 (2010).

    Article  Google Scholar 

  52. Keathley, P. D., Bhardwaj, S., Moses, J., Laurent, G. & Kärtner, F. X. Volkov transform generalized projection algorithm for attosecond pulse characterization. New J. Phys. 18, 073009 (2016).

    Article  ADS  MATH  Google Scholar 

  53. Li, J. et al. Polarization gating of high harmonic generation in the water window. Appl. Phys. Lett. 108, 231102 (2016).

    Article  ADS  Google Scholar 

  54. Emaury, F., Diebold, A., Saraceno, C. J. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).

    Article  ADS  Google Scholar 

  55. Furch, F. J. et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from noncollinear parametric amplifier. Opt. Lett. 42, 2495–2498 (2017).

    Article  ADS  Google Scholar 

  56. Boullet, J. et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system. Opt. Lett. 34, 1489–1491 (2009).

    Article  ADS  Google Scholar 

  57. Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nat. Photon. 7, 555–559 (2013).

    Article  ADS  Google Scholar 

  58. Harth, A. et al. Compact 200-kHz HHG source driven by a few-cycle OPCPA. J. Opt. 20, 014007 (2018).

    Article  ADS  Google Scholar 

  59. Osolodkov, M. et al. Generation and characterization of few-pulse attosecond pulse trains at 100-kHz repetition rate. J. Phys. B 53, 194003 (2020).

    Article  ADS  Google Scholar 

  60. Ye, P. et al. Attosecond pulse generation at ELI-ALPS 100-kHz repetition rate beamline. J. Phys. B 53, 154004 (2020).

    Article  ADS  Google Scholar 

  61. Mero, M. et al. 43-W, 1.55-μm and 12.5-W, 3.1-μm dual-beam, sub-10 cycle, 100-kHz optical parametric chirped pulse amplifier. Opt. Lett. 43, 5246–5249 (2018).

    Article  ADS  Google Scholar 

  62. Nagay, T., Forster, M. & Simon, P. Flexible follow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).

    Article  ADS  Google Scholar 

  63. Nagay, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318-W average power. Optica 6, 1423–1424 (2019).

    Article  ADS  Google Scholar 

  64. Ueffing, M. et al. Nonlinear pulse compression in a gas-filled multipass cell. Opt. Lett. 43, 2070–2073 (2018).

    Article  ADS  Google Scholar 

  65. Kaumanns, M., Kormin, D., Nubbemeyer, T., Pervak, V. & Karsch, S. Spectral broadening of 112-mJ, 1.3-ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 46, 929–932 (2021).

    Article  ADS  Google Scholar 

  66. Müller, M., Buldt, J., Stark, H., Grebing, C. & Limpert, J. Multipass cell for high-power few-cycle compression. Opt. Lett. 46, 2678–2681 (2021).

    Article  ADS  Google Scholar 

  67. Gebhardt, M. et al. Bright, high-repetition-rate water window soft X-ray source enabled by nonlinear self-compression in an antiresonant hollow-core fiber. Light Sci. Appl. 10, 36 (2021).

    Article  ADS  Google Scholar 

  68. Midorikawa, K., Nabekawa, Y. & Suda, A. XUV multiphoton processes with intense high-order harmonics. Prog. Quantum Electron. 32, 43–88 (2008).

    Article  ADS  Google Scholar 

  69. Rudawski, P. et al. A high-flux high-order harmonic source. Rev. Sci. Instrum. 84, 073103 (2013).

    Article  ADS  Google Scholar 

  70. Oishi, Y., Kaku, M., Suda, A., Kannari, F. & Midorikawa, K. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Opt. Exp. 14, 7230–7236 (2006).

    Article  Google Scholar 

  71. Merdji, H. et al. Isolated attosecond pulses using a detuned second-harmonic field. Opt. Lett. 32, 3134–3136 (2007).

    Article  ADS  Google Scholar 

  72. Calegari, F. et al. Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver. Opt. Lett. 34, 3125–3127 (2009).

    Article  ADS  Google Scholar 

  73. Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Phys. Rev. Lett. 104, 233901 (2010).

    Article  ADS  Google Scholar 

  74. Lan, P., Takahashi, E. J. & Midorikawa, K. Optimization of infrared two-color multicycle field synthesis for intense isolated attosecond pulse generation. Phys. Rev. A 82, 053413 (2010).

    Article  ADS  Google Scholar 

  75. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  76. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  77. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  78. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28-femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    Article  ADS  Google Scholar 

  79. Cao, W., Lu, P., Lan, P., Wang, X. & Yang, G. Single-attosecond pulse generation with an intense multicycle driving pulse. Phys. Rev. A 74, 063821 (2006).

    Article  ADS  Google Scholar 

  80. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above saturation few-cycle fields. Nat. Photon. 4, 875–879 (2010).

    Article  ADS  Google Scholar 

  81. Lan, P., Lu, P., Cao, W., Li, Y. & Wang, X. Isolated sub-100-as pulse generation via controlling electron dynamics. Phys. Rev. A 76, 011402 (2007).

    Article  ADS  Google Scholar 

  82. Zeng, Z., Cheng, Y., Song, X., Li, R. & Xu, Z. Generation of an extreme ultraviolet supercontinuum in a two-color laser field. Phys. Rev. Lett. 98, 203901 (2007).

    Article  ADS  Google Scholar 

  83. Jin, C., Wang, G., Wei, H., Le, A.-T. & Lin, C. D. Waveform for optimal sub-keV high-order harmonics with synthesized two- or three-color laser fields. Nat. Commun. 5, 4003 (2014).

    Article  ADS  Google Scholar 

  84. Haessler, S. et al. Optimization of quantum trajectories driven by strong-field waveforms. Phys. Rev. X 4, 021028 (2014).

    Google Scholar 

  85. Jin, C., Wang, G., Le, A.-T. & Lin, C. D. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses. Sci. Rep. 4, 7067 (2014).

    Article  Google Scholar 

  86. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    Article  ADS  Google Scholar 

  87. Chan, H.-S. et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science 331, 1165–1168 (2011).

    Article  ADS  Google Scholar 

  88. Wirth, A. et al. Synthesized light transients. Science 334, 195–199 (2011).

    Article  ADS  Google Scholar 

  89. Rivas, D. E. et al. Next generation driver for attosecond and laser-plasma physics. Sci. Rep. 7, 5224 (2017).

    Article  ADS  Google Scholar 

  90. Huang, S.-W. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photon. 5, 475–479 (2011).

    Article  ADS  Google Scholar 

  91. Rossi, G. M. et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nat. Photon. 14, 629–635 (2020).

    Article  ADS  Google Scholar 

  92. Ling, H. et al. High-energy mid-infrared sub-cycle pulses synthesis from a parametric amplifier. Nat. Commun. 8, 141 (2017).

    Article  ADS  Google Scholar 

  93. Xue, B. et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6, eaay2802 (2020).

    Article  ADS  Google Scholar 

  94. Takahashi, E. J., Fu, Y. & Midorikawa, K. Carrier-envelope phase stabilization of a 16-TW, 10-Hz Ti:sapphire laser. Opt. Lett. 40, 4835–4838 (2015).

    Article  ADS  Google Scholar 

  95. Fu, Y. et al. Towards GW-scale isolated attosecond pulse far beyond carbon K-edge driven by mid-infrared waveform synthesizer. Appl. Sci. 8, 2451 (2018).

    Article  Google Scholar 

  96. Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 208–286 (2016).

    Google Scholar 

  97. Isinger, M. et al. Photoionization in the time and frequency domain. Science 385, 893–896 (2017).

    Article  ADS  Google Scholar 

  98. Maquet, A., Caillat, J. & Taïeb, R. Attosecond delays in photoionization: time and quantum mechnics. J. Phys. B 47, 204004 (2014).

    Article  ADS  Google Scholar 

  99. Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  100. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article  Google Scholar 

  101. Wu, M., Chen, S., Camp, S., Schafer, K. J. & Gaarde, M. B. Theory of strong-field attosecond transient absorption. J. Phys. B 49, 062003 (2016).

    Article  ADS  Google Scholar 

  102. Buades, B. et al. Dispersive soft X-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica 5, 502–506 (2018).

    Article  ADS  Google Scholar 

  103. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–744 (2010).

    Article  ADS  Google Scholar 

  104. Attar, A. R. et al. Femtosecond X- ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    Article  ADS  Google Scholar 

  105. Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017).

    Article  ADS  Google Scholar 

  106. Kobayashi, Y. et al. Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy. Science 356, 79–83 (2019).

    Article  ADS  Google Scholar 

  107. Chang, K. F. et al. Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy. Nat. Commun. 11, 4042 (2020).

    Article  ADS  Google Scholar 

  108. Zinchenko, K. S. Sub 7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371, 489–494 (2021).

    Article  ADS  Google Scholar 

  109. Cederbaum, L. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

    Article  ADS  Google Scholar 

  110. Henning, H., Breidbach, J. & Cederbaum, L. Electron correlation as the driving force for charge transfer: charge migration following ionization in N-methyl acetamide. J. Phys. Chem. 109, 409–414 (2005).

    Article  Google Scholar 

  111. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

    Article  ADS  Google Scholar 

  112. Kuleff, A. I., Kryzhevoi, N. V., Pernpointner, M. & Cederbaum, L. Z. Core ionization initiates subfemtosecond charge migration in the valence shell of molecules. Phys. Rev. Lett. 117, 093002 (2016).

    Article  ADS  Google Scholar 

  113. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  114. Jager, M. F. et al. Tracking the insulator-to-metal phase transition with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl. Acad. Sci. USA 114, 9558–9563 (2006).

    Article  ADS  Google Scholar 

  115. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    Article  Google Scholar 

  116. Kühn, S. et al. The ELI-ALPS facility: the next generation of attosecond sources. J. Phys. B 50, 132002 (2017).

    Article  ADS  Google Scholar 

  117. Mondal, S. et al. Surface plasma attosource beamlines at ELI-ALPS. J. Opt. Soc. Am. B 35, A93–A120 (2018).

    Article  Google Scholar 

  118. Huijts, J. et al. Broadband coherent diffractive imaging. Nat. Photon. 14, 618–622 (2020).

    Article  ADS  Google Scholar 

  119. Rana, A. et al. Potential of attosecond coherent diffractive imaging. Phys. Rev. Lett. 125, 086101 (2020).

    Article  ADS  Google Scholar 

  120. Eschen, W. et al. Toward attosecond imaging at the nanoscale using broadband holography-assisted coherent imaging in the extreme ultraviolet. Commun. Phys. 4, 154 (2021).

    Article  Google Scholar 

  121. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

    Article  ADS  Google Scholar 

  122. Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99–105 (2014).

    Article  ADS  Google Scholar 

  123. Huang, P.-C. et al. Polarization control of isolated high-harmonic pulses. Nat. Photon. 12, 349–354 (2018).

    Article  ADS  Google Scholar 

  124. Gariepy, G. et al. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113, 153901 (2014).

    Article  ADS  Google Scholar 

  125. Turpin, A., Rego, L., Piconón, A., Román, J. S. & Hernández-García, C. Extreme ultraviolet fractional orbital angular momentum beams from high harmonic generation. Sci. Rep. 7, 43888 (2017).

    Article  ADS  Google Scholar 

  126. Nabekawa, Y., Hasegawa, H., Takahashi, E. & Midorikawa, K. Production of doubly-charged helium ions by two-photon absorption of an intense sub-10-fs soft X-ray pulse at 42-eV photon energy. Phys. Rev. Lett. 94, 043001 (2005).

    Article  ADS  Google Scholar 

  127. Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014).

    Article  ADS  Google Scholar 

  128. Yamamoto, S. et al. Element selectivity in second-harmonic generation of GaFeO3 by a soft-X-ray free-electron laser. Phys. Rev. Lett. 120, 223902 (2018).

    Article  ADS  Google Scholar 

  129. Lam, R. K. et al. Soft X-ray second harmonic generation as an interfacial probe. Phys. Rev. Lett. 120, 023901 (2018).

    Article  ADS  Google Scholar 

  130. Helk, T. et al. Table-top extreme ultraviolet second harmonic generation. Sci. Adv. 7, eabe2265 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank E. J. Takahashi for critical reading of the manuscript. I acknowledge financial support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) through Grants-in-Aid for Scientific Research no. 19H05628 and the Quantum Leap Flagship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Midorikawa.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Photonics thanks Francesca Calegari, Phillip Keathley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photon. 16, 267–278 (2022). https://doi.org/10.1038/s41566-022-00961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00961-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing