Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A look under the tunnelling barrier via attosecond-gated interferometry


Interferometry has been at the heart of wave optics since its early stages, resolving the coherence of the light field and enabling the complete reconstruction of the optical information it encodes. Transferring this concept to the attosecond time domain shed new light on fundamental ultrafast electron phenomena. Here we introduce attosecond-gated interferometry and probe one of the most fundamental quantum mechanical phenomena, field-induced tunnelling. Our experiment probes the evolution of an electronic wavefunction under the tunnelling barrier and records the phase acquired by an electron as it propagates in a classically forbidden region. We identify the quantum nature of the electronic wavepacket and capture its evolution within the optical cycle. Attosecond-gated interferometry has the potential to reveal the underlying quantum dynamics of strong-field-driven atomic, molecular and solid-state systems.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Attosecond-gated interferometry.
Fig. 2: Mapping the attosecond gating into the complex XUV field.
Fig. 3: Probing the tunnelling dynamics.

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Google Scholar 

  2. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    MathSciNet  Google Scholar 

  3. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  4. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Google Scholar 

  5. Klaiber, M., Hatsagortsyan, K. Z. & Keitel, C. H. Tunneling dynamics in multiphoton ionization and attoclock calibration. Phys. Rev. Lett. 114, 083001 (2015).

    ADS  Google Scholar 

  6. Ivanov, M. Y., Spanner, M. & Smirnova, O. Anatomy of strong field ionization. J. Mod. Opt. 52, 165–184 (2005).

    ADS  MATH  Google Scholar 

  7. Kheifets, A. S. The attoclock and the tunneling time debate. J. Phys. B 53, 072001 (2020).

    ADS  Google Scholar 

  8. Ni, H., Saalmann, U. & Rost, J.-M. Tunneling ionization time resolved by backpropagation. Phys. Rev. Lett. 117, 023002 (2016).

    ADS  Google Scholar 

  9. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    ADS  Google Scholar 

  10. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Google Scholar 

  11. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    ADS  Google Scholar 

  12. Rost, J. M. & Saalmann, U. Attoclock and tunnelling time. Nat. Photon. 13, 439–440 (2019).

    ADS  Google Scholar 

  13. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    ADS  Google Scholar 

  14. Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75–77 (2019).

    ADS  Google Scholar 

  15. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    ADS  Google Scholar 

  16. Landsman, A. S. et al. Ultrafast resolution of tunneling delay time. Optica 1, 343–349 (2014).

    ADS  Google Scholar 

  17. Arissian, L. et al. Direct test of laser tunneling with electron momentum imaging. Phys. Rev. Lett. 105, 133002 (2010).

    ADS  Google Scholar 

  18. Pfeiffer, A. N. et al. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit. Phys. Rev. Lett. 109, 083002 (2012).

    ADS  Google Scholar 

  19. Boge, R. et al. Probing nonadiabatic effects in strong-field tunnel ionization. Phys. Rev. Lett. 111, 103003 (2013).

    ADS  Google Scholar 

  20. Han, M., Ge, P., Shao, Y., Gong, Q. & Liu, Y. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets. Phys. Rev. Lett. 120, 073202 (2018).

    ADS  Google Scholar 

  21. Eckart, S. et al. Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization. Phys. Rev. Lett. 121, 163202 (2018).

    ADS  Google Scholar 

  22. Liu, K. et al. Detecting and characterizing the nonadiabaticity of laser-induced quantum tunneling. Phys. Rev. Lett. 122, 053202 (2019).

    ADS  Google Scholar 

  23. Li, M. et al. Photoelectron holographic interferometry to probe the longitudinal momentum offset at the tunnel exit. Phys. Rev. Lett. 122, 183202 (2019).

    ADS  Google Scholar 

  24. Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815–819 (2015).

    Google Scholar 

  25. Eckart, S. et al. Ultrafast preparation and detection of ring currents in single atoms. Nat. Phys. 14, 701–704 (2018).

    Google Scholar 

  26. Hickstein, D. D. et al. Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization. Phys. Rev. Lett. 109, 073004 (2012).

    ADS  Google Scholar 

  27. Ni, H., Saalmann, U. & Rost, J.-M. Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet. Phys. Rev. A 97, 013426 (2018).

    ADS  Google Scholar 

  28. Han, M. et al. Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity. Phys. Rev. Lett. 119, 073201 (2017).

    ADS  Google Scholar 

  29. Han, M. et al. Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock. Nat. Photon. 15, 765–771 (2021).

    ADS  Google Scholar 

  30. Dahlström, J. M., L’Huillier, A. & Mauritsson, J. Quantum mechanical approach to probing the birth of attosecond pulses using a two-colour field. J. Phys. B 44, 095602 (2011).

    ADS  Google Scholar 

  31. Zhao, J. & Lein, M. Determination of ionization and tunneling times in high-order harmonic generation. Phys. Rev. Lett. 111, 043901 (2013).

    ADS  Google Scholar 

  32. Azoury, D. et al. Electronic wavefunctions probed by all-optical attosecond interferometry. Nat. Photon. 13, 54–59 (2019).

    ADS  Google Scholar 

  33. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  34. Freeman, R. et al. Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092–1095 (1987).

    ADS  Google Scholar 

  35. De Boer, M. & Muller, H. Observation of large populations in excited states after short-pulse multiphoton ionization. Phys. Rev. Lett. 68, 2747–2750 (1992).

    ADS  Google Scholar 

  36. Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008).

    ADS  Google Scholar 

  37. Salières, P. et al. Feynman’s path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    ADS  Google Scholar 

  38. Torlina, L. & Smirnova, O. Coulomb time delays in high harmonic generation. New J. Phys. 19, 023012 (2017).

    ADS  Google Scholar 

  39. Azoury, D., Krüger, M., Bruner, B. D., Smirnova, O. & Dudovich, N. Direct measurement of coulomb-laser coupling. Sci. Rep. 11, 495 (2021).

    Google Scholar 

  40. Smirnova, O. & Ivanov, M. Y. in Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy (eds Vrakking, M. & Schulz, T.) 201–256 (Wiley, 2013).

  41. Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686–698 (1942).

    ADS  Google Scholar 

  42. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Google Scholar 

  43. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Google Scholar 

  44. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    ADS  Google Scholar 

  45. Silva, R., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photon. 12, 266–270 (2018).

    ADS  Google Scholar 

  46. Jager, M. F. et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. USA 114, 9558–9563 (2017).

    ADS  Google Scholar 

Download references


We thank D. Tannor, Y. Mairesse and B. Pons for helpful discussions. N.D. is the incumbent of the Robin Chemers Neustein Professorial Chair. N.D. acknowledges the Minerva Foundation, the Israeli Science Foundation, the Crown Center of Photonics and the European Research Council for financial support. M.I. and O.S. acknowledge support from the DFG SPP 1840 ‘Quantum Dynamics in Tailored Intense Fields’, DFG grants SM 292/5-2 and IV 152/6-2. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 899794. O.K. acknowledges the Azrieli Foundation for the award of an Azrieli Fellowship. M.K. acknowledges financial support by the Minerva Foundation and the Koshland Foundation. D.A. acknowledges financial support by the Zuckerman STEM Leadership Program.

Author information

Authors and Affiliations



N.D., M.I., O.S. and S.P. supervised the study. O.K., D.A., M.K. and N.D. conceived and designed the experiments. O.K., D.A. and M.K. built the experimental setup. O.K. and Y.F. performed the measurements and analysed the data. O.K. developed and performed the ARM theoretical calculations, supervised by M.I., O.S., S.P. and N.D. The TDSE theoretical calculations were conceived and performed by S.P. Operation of the laser system was supported by B.D.B. All authors interpreted the experimental and theoretical results, discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Nirit Dudovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10 and Figs. 1–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kneller, O., Azoury, D., Federman, Y. et al. A look under the tunnelling barrier via attosecond-gated interferometry. Nat. Photon. 16, 304–310 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing