Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods

Abstract

The direct detection of high-energy radiation such as X-rays and γ-rays by semiconductors at room temperature is a challenging proposition that requires remarkably pure and nearly perfect crystals. The emergence of metal halide perovskites, defect-tolerant semiconductors, is reviving hope for new materials in this field after an almost 20 year hiatus. Metal halide perovskites, which combine exceptional optoelectronic properties, versatile chemistry and simple synthesis, are challenging traditional approaches for the development of novel semiconductors for detecting hard radiation. We discuss the relevant physical properties, promising materials, fabrication techniques and device architectures for high-performance, low-cost detectors by targeting next-generation semiconductors for radiation detection. We also present a perspective on the impact of such advances in future medical imaging applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Basic physical processes and characteristics of semiconductor X-ray detectors.
Fig. 2: Effects of dimensionality reduction on material and device properties.
Fig. 3: Different approaches for the fabrication of MHP X- and γ-ray detectors.
Fig. 4: Halide perovskite semiconductors for X- and γ-ray spectroscopy in the single-photon mode.

References

  1. Heiss, W. & Brabec, C. X-ray imaging: perovskites target X-ray detection. Nat. Photon. 10, 288–289 (2016).

    ADS  Google Scholar 

  2. Davros, W. Medical imaging principles, detectors, and electronics. Med. Phys. 36, 5374–5375 (2009).

    Google Scholar 

  3. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    ADS  Google Scholar 

  4. Hoheisel, M. & Batz, L. Requirements on amorphous semiconductors for medical X-ray detectors. Thin Solid Films 383, 132–136 (2001).

    ADS  Google Scholar 

  5. Huang, H. & Abbaszadeh, S. Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20, 1694–1704 (2020).

    ADS  Google Scholar 

  6. Chen, Z., Zhu, Y. & He, Z. Intrinsic photopeak efficiency measurement and simulation for pixelated CdZnTe detector. Nucl. Instr. Meth. Phys. Res. A 980, 164501 (2020).

    Google Scholar 

  7. Yamada, K., Kawaguchi, H., Matsui, T., Okuda, T. & Ichiba, S. Structural phase transition and electrical conductivity of the perovskite CH3NH3Sn1-xPbxBr3 and CsSnBr3. Bull. Chem. Soc. Jpn 63, 2521–2525 (1990).

    Google Scholar 

  8. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Google Scholar 

  9. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Google Scholar 

  10. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    ADS  Google Scholar 

  11. Stoumpos, C. C. & Kanatzidis, M. G. Halide perovskites: poor man’s high-performance semiconductors. Adv. Mater. 28, 5778–5793 (2016).

    Google Scholar 

  12. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Google Scholar 

  13. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    ADS  Google Scholar 

  14. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Google Scholar 

  15. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  16. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    ADS  Google Scholar 

  17. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Google Scholar 

  18. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    ADS  Google Scholar 

  19. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    ADS  Google Scholar 

  20. Knoll, G. F. Radiation Detection and Measurement (John Wiley & Sons, 2010).

  21. Schlesinger, T. E. et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 32, 103–189 (2001).

    Google Scholar 

  22. Klein, C. A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968).

    ADS  Google Scholar 

  23. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    ADS  Google Scholar 

  24. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    ADS  Google Scholar 

  25. Kabir, M. Z. & Kasap, S. O. Sensitivity of x-ray photoconductors: charge trapping and absorption-limited universal sensitivity curves. J. Vac. Sci. Technol. A 20, 1082–1086 (2002).

    ADS  Google Scholar 

  26. Hubbell, J. H. Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33, 1269–1290 (1982).

    Google Scholar 

  27. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    ADS  Google Scholar 

  28. Pan, W. et al. Hot-Pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31, 1904405 (2019).

    Google Scholar 

  29. Wu, H., Ge, Y., Niu, G. & Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 4, 144–163 (2021).

    Google Scholar 

  30. Johns, P. M. & Nino, J. C. Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 040902 (2019).

    ADS  Google Scholar 

  31. Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).

    ADS  Google Scholar 

  32. Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).

    Google Scholar 

  33. Zhong, H. Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instr. Meth. Phys. Res. A 463, 250–267 (2001).

    Google Scholar 

  34. Liu, Z. et al. Noise sources and their limitations on the performance of compound semiconductor hard radiation detectors. Nucl. Instr. Meth. Phys. Res. A 916, 133–140 (2019).

    ADS  Google Scholar 

  35. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15, 36–42 (2021).

    ADS  Google Scholar 

  36. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Google Scholar 

  37. Kasap, S. O. et al. Progress in the science and technology of direct conversion a-Se X-ray sensors. J. Non-Cryst. Solids 299–302, 988–992 (2002).

    ADS  Google Scholar 

  38. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    ADS  Google Scholar 

  39. Fabini, D. H., Seshadri, R. & Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45, 467–477 (2020).

    ADS  Google Scholar 

  40. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    ADS  Google Scholar 

  41. Srimath Kandada, A. R. & Silva, C. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11, 3173–3184 (2020).

    Google Scholar 

  42. Miyata, K. & Zhu, X. Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    ADS  Google Scholar 

  43. Meggiolaro, D., Ambrosio, F., Mosconi, E., Mahata, A. & De Angelis, F. Polarons in metal halide perovskites. Adv. Energy Mater. 10, 1902748 (2020).

    Google Scholar 

  44. Gao, P., Bin Mohd Yusoff, A. R. & Nazeeruddin, M. K. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9, 5028 (2018).

    ADS  Google Scholar 

  45. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Google Scholar 

  46. Yin, J. et al. Molecular behavior of zero-dimensional perovskites. Sci. Adv. 3, e1701793 (2017).

    ADS  Google Scholar 

  47. McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. & Wessels, B. W. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 29, 4129–4145 (2017).

    Google Scholar 

  48. Zentai, G. Comparison of CMOS and a-Si flat panel imagers for X-ray imaging. In 2011 IEEE International Conference on Imaging Systems and Techniques 194–200 (IEEE, 2011).

  49. Belev, G., Kasap, S., Rowlands, J. A., Hunter, D. & Yaffe, M. Dependence of the electrical properties of stabilized a-Se on the preparation conditions and the development of a double layer X-ray detector structure. Curr. Appl. Phys. 8, 383–387 (2008).

    ADS  Google Scholar 

  50. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image. Sensors 11, 5112–5157 (2011).

    ADS  Google Scholar 

  51. Kasap, S. et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Stat. Solidi B 246, 1794–1805 (2009).

    ADS  Google Scholar 

  52. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017).

    ADS  Google Scholar 

  53. Yin, L. et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection. Adv. Opt. Mater. 7, 1900491 (2019).

    Google Scholar 

  54. Yang, B. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 10, 1989 (2019).

    ADS  Google Scholar 

  55. Keshavarz, M. et al. Tuning the structural and optoelectronic properties of Cs2AgBiBr6 double-perovskite single crystals through alkali-metal substitution. Adv. Mater. 32, 2001878 (2020).

    Google Scholar 

  56. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    ADS  Google Scholar 

  57. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    ADS  Google Scholar 

  58. Dong, Q. et al. Electron-hole diffusion lengths 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    ADS  Google Scholar 

  59. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    ADS  Google Scholar 

  60. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    ADS  Google Scholar 

  61. Liu, Y. et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33, 2006010 (2021).

    Google Scholar 

  62. Liu, Y. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 9, 5302 (2018).

    ADS  Google Scholar 

  63. Li, H. et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32, 2003790 (2020).

    Google Scholar 

  64. Zhuang, R. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photon. 13, 602–608 (2019).

    ADS  Google Scholar 

  65. Xia, M. et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater. 30, 1910648 (2020).

    Google Scholar 

  66. Liu, Y. et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3, 180–196 (2020).

    Google Scholar 

  67. Zhang, Y. et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11, 2304 (2020).

    ADS  Google Scholar 

  68. Zhao, J. et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photon. 14, 612–617 (2020).

    ADS  Google Scholar 

  69. Xu, Y. et al. Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photon. 6, 196–203 (2019).

    Google Scholar 

  70. Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 11, 436–440 (2017).

    ADS  Google Scholar 

  71. Matt, G. J. et al. Sensitive direct converting X-ray detectors utilizing crystalline CsPbBr3 perovskite films fabricated via scalable melt processing. Adv. Mater. Inter. 7, 1901575 (2020).

    Google Scholar 

  72. Hofstadter, R. Thallium halide crystal counter. Phy. Rev. 72, 1120–1121 (1947).

    ADS  Google Scholar 

  73. Hofstadter, R. Alkali halide scintillation counters. Phy. Rev. 74, 100–101 (1948).

    ADS  Google Scholar 

  74. Owens, A. Semiconductor materials and radiation detection. J. Synchrotron Rad. 13, 143–150 (2006).

    Google Scholar 

  75. Li, J. et al. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J. Am. Chem. Soc. 140, 11085–11090 (2018).

    Google Scholar 

  76. Sun, Q. et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A 6, 23388–23395 (2018).

    Google Scholar 

  77. McCall, K. M. et al. α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photon. 5, 3748–3762 (2018).

    Google Scholar 

  78. Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. & Kovalenko, M. V. Solution-grown CsPbBr3 perovskite single crystals for photon detection. Chem. Mater. 28, 8470–8474 (2016).

    Google Scholar 

  79. Tan, R. et al. Improved radiation sensing with methylammonium lead tribromide perovskite semiconductors. Nucl. Instr. Meth. Phys. Res. A 986, 164710 (2021).

    Google Scholar 

  80. Xu, Q. et al. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nucl. Instr. Meth. Phys. Res. A 848, 106–108 (2017).

    ADS  Google Scholar 

  81. Joglekar, S. G., Hammig, M. D. & Guo, L. J. High-energy photon spectroscopy using all solution-processed heterojunctioned surface-modified perovskite single crystals. ACS Appl. Mater. Interfaces 11, 33399–33408 (2019).

    Google Scholar 

  82. He, Y. et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photon. 5, 4132–4138 (2018).

    Google Scholar 

  83. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    ADS  Google Scholar 

  84. He, Y. et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor. J. Am. Chem. Soc. 143, 2068–2077 (2021).

    Google Scholar 

  85. Liu, X. et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383–15390 (2021).

    Google Scholar 

  86. He, Y. et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nucl. Instr. Meth. Phys. Res. A 922, 217–221 (2019).

    ADS  Google Scholar 

  87. He, Y. et al. Defect antiperovskite compounds Hg3Q2I2 (Q = S, Se, and Te) for room-temperature hard radiation detection. J. Am. Chem. Soc. 139, 7939–7951 (2017).

    Google Scholar 

  88. Lin, W. et al. TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature. ACS Photon. 4, 1805–1813 (2017).

    Google Scholar 

  89. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    ADS  Google Scholar 

  90. Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).

    ADS  Google Scholar 

  91. Medical Electrical Equipment—Characteristics of Digital X-ray Imaging Devices Vol. IEC 62220–1–1:2015 (International Electrotechnical Commission, 2015).

  92. Medical Electrical Equipment—Dosimeters with Ionization Chambers and/or Semiconductor Detectors as Used in X-ray Diagnostic Imaging Vol. IEC 61674:2012 (International Electrotechnical Commission, 2012).

  93. Boldyreva, A. G. et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J. Phys. Chem. Lett. 11, 2630–2636 (2020).

    Google Scholar 

  94. Pan, L., Feng, Y., Kandlakunta, P., Huang, J. & Cao, L. R. Performance of perovskite CsPbBr3 single crystal detector for gamma-ray detection. IEEE Trans. Nucl. Sci. 67, 443–449 (2020).

    ADS  Google Scholar 

  95. Capper, P. Properties of Narrow Gap Cadmium-Based Compounds (INSPEC the Institution of Electrical Engineers, 1994).

  96. Triboulet, R. & Siffert, P. CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (Elsevier, 2009).

  97. Ishii, M. & Kobayashi, M. Single crystals for radiation detectors. Prog. Cryst. Growth Charact. Mater. 23, 245–311 (1992).

    Google Scholar 

  98. Wang, X. et al. PIN diodes array made of perovskite single crystal for X-ray imaging. Phys. Stat. Solidi RRL 12, 1800380 (2018).

    Google Scholar 

  99. Song, J. et al. Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors. J. Phys. Chem. Lett. 11, 3529–3535 (2020).

    Google Scholar 

  100. Tian, S. et al. Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors. Nano Energy 78, 105335 (2020).

    Google Scholar 

  101. Wang, X. et al. Ultrafast ionizing radiation detection by p–n junctions made with single crystals of solution-processed perovskite. Adv. Electron. Mater. 4, 1800237 (2018).

    Google Scholar 

  102. Li, L. et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density. ACS Appl. Mater. Interfaces 11, 7522–7528 (2019).

    Google Scholar 

  103. Liu, X. et al. Charge transport behavior in solution-grown methylammonium lead tribromide perovskite single crystal using α particles. J. Phys. Chem. C 122, 14355–14361 (2018).

    Google Scholar 

  104. Ye, F. et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv. Funct. Mater. 29, 1806984 (2019).

    Google Scholar 

  105. Li, J. et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection. ACS Appl. Mater. Interfaces 12, 989–996 (2020).

    Google Scholar 

  106. Peng, J. et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 12, 1531 (2021).

    ADS  Google Scholar 

  107. Huang, Y. et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem. Int. Ed. 58, 17834–17842 (2019).

    Google Scholar 

  108. Li, X. et al. Three-dimensional lead iodide perovskitoid hybrids with high X-ray photoresponse. J. Am. Chem. Soc. 142, 6625–6637 (2020).

    Google Scholar 

  109. Tsai, H. et al. A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).

    ADS  Google Scholar 

  110. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).

    ADS  Google Scholar 

  111. Ji, C. et al. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater. 30, 1905529 (2020).

    Google Scholar 

  112. Shen, Y. et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59, 14896–14902 (2020).

    Google Scholar 

  113. Xu, Z. et al. Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew. Chem. Int. Ed. 58, 15757–15761 (2019).

    Google Scholar 

  114. Li, X. et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Sci. China Mater. 64, 1427–1436 (2021).

    Google Scholar 

  115. Zhang, B.-B. et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J. Phys. Chem. Lett. 11, 432–437 (2020).

    Google Scholar 

  116. Yao, L. et al. Bismuth halide perovskite derivatives for direct X-ray detection. J. Mater. Chem. C 8, 1239–1243 (2020).

    Google Scholar 

  117. Xiao, B. et al. Melt-grown large-sized Cs2TeI6 crystals for X-ray detection. CrystEngComm 22, 5130–5136 (2020).

    Google Scholar 

  118. Zheng, X. et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 49, 299–306 (2020).

    Google Scholar 

  119. Schieber, M. et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth 225, 118–123 (2001).

    ADS  Google Scholar 

  120. Cherry, S. R., Sorenson, J. & Phelps, M. Physics in Nuclear Medicine (Elsevier, 2012).

  121. Cates, J. & Levin, C. Realizing PET systems with 100 ps FWHM coincidence timing resolution (conference presentation). Proc. SPIE 9969, 99690H(2016).

    ADS  Google Scholar 

  122. Ito, T. et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator. J. Appl. Clin. Med. Phys. 22, 165–177 (2021).

    Google Scholar 

  123. NM/CT 870 CZT (GE Healthcare, 2018); https://www.gehealthcare.com/products/molecular-imaging/nuclear-medicine/nm-ct-870-czt

  124. Willemink, M. J., Persson, M., Pourmorteza, A., Pelc, N. J. & Fleischmann, D. Photon-counting CT: technical principles and clinical prospects. Radiology 289, 293–312 (2018).

    Google Scholar 

Download references

Acknowledgements

Y.H. acknowledges support from the Research Fund from Soochow University (grant number NH12800621) and the State Key Laboratory of Radiation Medicine and Protection (grant number MZ12800121). M.G.K. acknowledges support from the Defense Threat Reduction Agency (DTRA) as part of the Interaction of Ionizing Radiation with Matter University Research Alliance (IIRM-URA) under contract number HDTRA1-20-2-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

Y.H. and M.G.K. are involved in a newly founded startup company called Actinia whose aim is to commercialize halide perovskites as γ-ray and X-ray detectors.

Additional information

Peer review information Nature Photonics thanks Wolfgang Heiss, Kris Iniewski, Sergii Yakunin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Hadar, I. & Kanatzidis, M.G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16, 14–26 (2022). https://doi.org/10.1038/s41566-021-00909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00909-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing