Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PHOTONIC ARTIFICIAL INTELLIGENCE

Competitive photonic neural networks

Photonics offers high hopes for next-generation neural network processors. Now it has been shown that even entirely using off-the-shelf photonics allows surpassing speed and energy efficiency of cutting-edge GPUs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Optical neural network computing.

References

  1. 1.

    Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  2. 2.

    Psaltis, D., Brady, D., Gu, X.-G. & Lin, S. Nature 343, 325–330 (1990).

    ADS  Article  Google Scholar 

  3. 3.

    Zhou, T. et al. Nat. Photon. https://doi.org/10.1038/s41566-021-00796-w (2021).

    Article  Google Scholar 

  4. 4.

    Rafayelyan, M., Dong, J., Tan, Y., Krzakala, F. & Gigan, S. Phys. Rev. X 10, 41037 (2020).

    Google Scholar 

  5. 5.

    Lin, X. et al. Science 361, 1004–1008 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Dinc, N. U., Psaltis, D. & Brunner, D. Photoniques 114, 34–38 (2020).

    ADS  Article  Google Scholar 

  7. 7.

    Wetzstein, G. et al. Nature 588, 39–47 (2020).

    ADS  Article  Google Scholar 

  8. 8.

    Xu, X. et al. Nature 589, 44–51 (2021).

    ADS  Article  Google Scholar 

  9. 9.

    Feldmann, J. et al. Nature 589, 52–58 (2021).

    ADS  Article  Google Scholar 

  10. 10.

    Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Preprint at https://arxiv.org/abs/2012.12404 (2020).

  11. 11.

    Porte, X. et al. Preprint at https://arxiv.org/abs/2012.11153 (2020).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Brunner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunner, D., Psaltis, D. Competitive photonic neural networks. Nat. Photonics 15, 323–324 (2021). https://doi.org/10.1038/s41566-021-00803-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing