Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots


Colloidal quantum dots are promising photoactive materials that enable plentiful photonic and optoelectronic applications ranging from lasers, displays and photodetectors to solar cells1,2,3,4,5,6,7,8,9. However, these applications mainly utilize the linear optical properties of quantum dots, and their great potential in the broad nonlinear optical regime is still waiting for full exploration10,11,12. Here, we demonstrate that a simple coating of a sub-200-nm-thick quantum dot film on two-dimensional materials can significantly enhance their nonlinear optical responses (second, third and fourth harmonic generation) by more than three orders of magnitude. Systematic experimental results indicate that this enhancement is driven by a non-trivial mechanism of multiphoton-excitation resonance energy transfer, where the quantum dots directly deliver their strongly absorbed multiphoton energy to the adjacent two-dimensional materials by a remote dipole–dipole coupling. Our findings could expand the applications of quantum dots in many exciting areas beyond linear optics, such as nonlinear optical signal processing, multiphoton imaging and ultracompact nonlinear optical elements.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MoS2 monolayer SHG enhancement with QD coating.
Fig. 2: Interaction-distance-dependent SHG enhancement.
Fig. 3: Excitation-wavelength-dependent SHG enhancement.
Fig. 4: Universal optical nonlinearity enhancement of various 2D systems with different frequency harmonic orders.


  1. Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    Article  Google Scholar 

  2. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011).

    Article  ADS  Google Scholar 

  3. Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543–548 (2011).

    Article  ADS  Google Scholar 

  4. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  ADS  Google Scholar 

  5. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

    Article  ADS  Google Scholar 

  6. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  ADS  Google Scholar 

  7. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017).

    Article  ADS  Google Scholar 

  8. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).

    Article  ADS  Google Scholar 

  9. Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019).

    Article  ADS  Google Scholar 

  10. Allione, M. et al. Two-photon-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type II quantum rods. ACS Nano 7, 2443–2452 (2013).

    Article  Google Scholar 

  11. Wang, Y. et al. Stimulated emission and lasing from CdSe/CdS/ZnS core–multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 26, 2954–2961 (2014).

    Article  Google Scholar 

  12. Makarov, N. S. et al. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules. ACS Nano 8, 12572–12586 (2014).

    Article  Google Scholar 

  13. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  ADS  Google Scholar 

  14. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  15. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  ADS  Google Scholar 

  17. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  ADS  Google Scholar 

  18. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227–238 (2016).

    Article  ADS  Google Scholar 

  19. Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

    Article  ADS  Google Scholar 

  20. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  ADS  Google Scholar 

  21. Cheng, J.-L., Vermeulen, N. & Sipe, J. Third order optical nonlinearity of graphene. New J. Phys. 16, 053014 (2014).

    Article  ADS  Google Scholar 

  22. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  ADS  Google Scholar 

  23. Liang, J. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 17, 7539–7543 (2017).

    Article  ADS  Google Scholar 

  24. Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics 12, 430–436 (2018).

    Article  ADS  Google Scholar 

  25. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    Article  ADS  Google Scholar 

  26. Aouani, H., Rahmani, M., Navarro-Cia, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014).

    Article  ADS  Google Scholar 

  27. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

    Article  ADS  Google Scholar 

  28. Wen, X., Xu, W., Zhao, W., Khurgin, J. B. & Xiong, Q. Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Lett. 18, 1686–1692 (2018).

    Article  ADS  Google Scholar 

  29. Shi, J. et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 19, 3838–3845 (2019).

    Article  ADS  Google Scholar 

  30. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  ADS  Google Scholar 

  31. Hernández-Martínez, P. L., Govorov, A. O. & Demir, H. V. Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J. Phys. Chem. C 117, 10203–10212 (2013).

    Article  Google Scholar 

  32. Cox, J. D. & Garcia de Abajo, F. J. Nonlinear atom-plasmon interactions enabled by nanostructured graphene. Phys. Rev. Lett. 121, 257403 (2018).

    Article  ADS  Google Scholar 

  33. Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    Article  ADS  Google Scholar 

  34. Tisdale, W. A. et al. Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).

    Article  ADS  Google Scholar 

  35. Gaudreau, L. et al. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 13, 2030–2035 (2013).

    Article  ADS  Google Scholar 

  36. Rowland, C. E. et al. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 14, 484–489 (2015).

    Article  ADS  Google Scholar 

  37. Raja, A. et al. Energy transfer from quantum dots to graphene and MoS2: the role of absorption and screening in two-dimensional materials. Nano Lett. 16, 2328–2333 (2016).

    Article  ADS  Google Scholar 

  38. Zhu, X. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).

    Article  Google Scholar 

  39. Prins, F., Goodman, A. J. & Tisdale, W. A. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett. 14, 6087–6091 (2014).

    Article  ADS  Google Scholar 

  40. Engelmann, A., Yudson, V. & Reineker, P. Enhanced optical nonlinearity of hybrid excitons in an inorganic semiconducting quantum dot covered by an organic layer. Phys. Rev. B 57, 1784–1790 (1998).

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (52025023, 51991342, 52021006, 51722204, 51972041, 51972042, 51672007, 11974023, 12025407 and 11934003), the National Key R&D Program of China (2016YFA0300903 and 2016YFA0300804), Beijing Natural Science Foundation (JQ19004), Beijing Excellent Talents Training Support (2017000026833ZK11), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB33000000), Beijing Municipal Science & Technology Commission (Z191100007219005), Beijing Graphene Innovation Program (Z181100004818003), Key-Area Research and Development Program of GuangDong Province (2020B010189001, 2019B010931001 and 2018B030327001), the Science, Technology and Innovation Commission of Shenzhen Municipality (KYTDPT20181011104202253), Bureau of Industry and Information Technology of Shenzhen (Graphene platform 201901161512), The Pearl River Talent Recruitment Program of Guangdong Province (2019ZT08C321), National Equipment Program of China (ZDYZ2015-1) and the China Postdoctoral Science Foundation (2020M680177).

Author information

Authors and Affiliations



Kaihui Liu designed the experiments. Kaihui Liu and J.X. supervised the project. H.H., C.W. and Z.Z. performed the frequency harmonic generation experiments. F.W., J.F., H.S. and Y.W. prepared the QD samples. Y.Zuo, J.W., C.L. and Y.Zhao grew MoS2 and WS2 samples. J.Z., J.Y., Kehai Liu, P.G., S.M., S.W. and Z.S. suggested the optical experiments. Kaihui Liu and H.H. wrote the manuscript. All authors contributed to the scientific discussion and modifying the manuscript.

Corresponding authors

Correspondence to Kaihui Liu or Jie Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Note 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Wu, C., Zhao, Z. et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat. Photon. 15, 510–515 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing