Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong mid-infrared photoresponse in small-twist-angle bilayer graphene


Small-twist-angle (<2°) bilayer graphene has received extraordinary attention recently due to its exciting physical properties1,2,3,4,5,6,7,8,9,10,11. Compared with monolayer graphene, the Brillouin zone folding in twisted bilayer graphene (TBG) leads to the formation of a superlattice bandgap and substantial modification to the density of states4,6,7,12,13. However, these emerging properties have rarely been leveraged to realize new optoelectronic devices. Here, we demonstrate the strong, gate-tunable photoresponse in the mid-infrared wavelength range of 5 to 12 μm. A maximum extrinsic photoresponsivity of 26 mA W−1 has been achieved at 12 μm when the Fermi level in 1.81° TBG was tuned to its superlattice bandgap. Moreover, the strong photoresponse critically depends on the formation of a superlattice bandgap, and it vanishes in the gapless case with an ultrasmall twist angle (<0.5°). Our demonstration reveals the promising optical properties of TBG and provides an alternative material platform for tunable mid-infrared optoelectronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Strong mid-infrared photoresponse in 1.81° TBG.
Fig. 2: Bolometric photocurrent enhanced by moiré superlattice.
Fig. 3: Photoresponse in bilayer graphene with ultrasmall twist angle.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    ADS  Google Scholar 

  2. 2.

    Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    ADS  Google Scholar 

  3. 3.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  Google Scholar 

  4. 4.

    Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    ADS  Google Scholar 

  5. 5.

    Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    ADS  Google Scholar 

  6. 6.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

  7. 7.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  8. 8.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS  Google Scholar 

  9. 9.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    ADS  Google Scholar 

  10. 10.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Google Scholar 

  11. 11.

    Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 5, eaaw9770 (2019).

    ADS  Google Scholar 

  12. 12.

    Moon, P. & Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012).

    ADS  Google Scholar 

  13. 13.

    Trambly de Laissardière, G., Mayou, D. & Magaud, L. Numerical studies of confined states in rotated bilayers of graphene. Phys. Rev. B 86, 125413 (2012).

    ADS  Google Scholar 

  14. 14.

    Ma, C. et al. Discovery of high dimensional band topology in twisted bilayer graphene. Preprint at (2019).

  15. 15.

    Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    ADS  Google Scholar 

  16. 16.

    Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    ADS  Google Scholar 

  17. 17.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS  Google Scholar 

  18. 18.

    Xu, S. G. et al. Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nat. Commun. 10, 4008 (2019).

    ADS  Google Scholar 

  19. 19.

    Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    ADS  Google Scholar 

  20. 20.

    Tabert, C. J. & Nicol, E. J. Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402 (2013).

    ADS  Google Scholar 

  21. 21.

    Moon, P. & Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013).

    ADS  Google Scholar 

  22. 22.

    Le, H. A. & Do, V. N. Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space. Phys. Rev. B 97, 125136 (2018).

    ADS  Google Scholar 

  23. 23.

    Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2009).

    ADS  Google Scholar 

  24. 24.

    Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotechnol. 11, 520–524 (2016).

    ADS  Google Scholar 

  25. 25.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  Google Scholar 

  26. 26.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS  Google Scholar 

  27. 27.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS  Google Scholar 

  28. 28.

    Patel, H. et al. Tunable optical excitations in twisted bilayer graphene form strongly bound excitons. Nano Lett. 15, 5932–5937 (2015).

    ADS  Google Scholar 

  29. 29.

    Yin, J. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 7, 10699 (2016).

    ADS  Google Scholar 

  30. 30.

    Xin, W. et al. Photovoltage enhancement in twisted-bilayer graphene using surface plasmon resonance. Adv. Opt. Mater. 4, 1703–1710 (2016).

    Google Scholar 

  31. 31.

    Yu, K. et al. Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 99, 241405 (2019).

    ADS  Google Scholar 

  32. 32.

    Patel, H., Huang, L., Kim, C.-J., Park, J. & Graham, M. W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019).

    ADS  Google Scholar 

  33. 33.

    Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    ADS  Google Scholar 

  34. 34.

    Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron-phonon coupling and Landau level crossing. Phys. Rev. B 98, 035425 (2018).

    ADS  Google Scholar 

  35. 35.

    Levine, B. F., Gunapala, S. D., Kuo, J. M., Pei, S. S. & Hui, S. Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1−xAs quantum well infrared photodetectors. Appl. Phys. Lett. 59, 1864–1866 (1991).

    ADS  Google Scholar 

  36. 36.

    Gunapala, S. D. et al. Long-wavelength 640 × 486 GaAs/AlGaAs quantum well infrared photodetector snap-shot camera. IEEE Trans. Electron Dev. 45, 1890–1895 (1998).

    ADS  Google Scholar 

  37. 37.

    Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    Google Scholar 

  38. 38.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    ADS  Google Scholar 

  39. 39.

    Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    ADS  Google Scholar 

  40. 40.

    Liddiard, K. C. Thin-film resistance bolometer IR detectors. Infrared Phys 24, 57–64 (1984).

    ADS  Google Scholar 

  41. 41.

    Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1–24 (1994).

    ADS  Google Scholar 

  42. 42.

    Chanin, G. & Torre, J. P. Electrothermal model for ideal semiconductor bolometers. J. Opt. Soc. Am. A 1, 412–419 (1984).

    ADS  Google Scholar 

  43. 43.

    Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).

    ADS  Google Scholar 

  44. 44.

    Furchi, M. M., Polyushkin, D. K., Pospischil, A. & Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014).

    ADS  Google Scholar 

  45. 45.

    Guo, Q. et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 17, 986–992 (2018).

    ADS  Google Scholar 

  46. 46.

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012).

    ADS  Google Scholar 

  47. 47.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Google Scholar 

  48. 48.

    Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    Google Scholar 

Download references


We acknowledge financial support from the National Science Foundation EFRI-NewLAW programme (grant no. 1741693). We also thank the Office of Naval Research for partial support in the experimental set-ups. The theoretical work at UTD is supported by the Army Research Office under grant no. W911NF-18-1-0416 and the Natural Science Foundation under grant no. DMR-1921581 through the DMREF programme. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (grant no. JPMJCR15F3), JST. We also acknowledge L. Wang, D. Hynek, J. Woods, J. Cha at Yale West Campus and our previous group member X. Chen for their support.

Author information




B.D., C.M. and S.Y. fabricated and characterized the devices. Q.W. and F.Z. performed the theoretical calculations. K.W. and T.T. synthesized the hBN crystals. F.X., F.Z., B.D. and Q.W. drafted the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Fan Zhang or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Ma, C., Wang, Q. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 14, 549–553 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing