Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-purity orbital angular momentum states from a visible metasurface laser

Matters Arising to this article was published on 30 April 2021

Abstract

Orbital angular momentum (OAM) from lasers holds promise for compact, at-source solutions for applications ranging from imaging to communications. However, conjugate symmetry between circular spin and opposite helicity OAM states (±) from conventional spin–orbit approaches has meant that complete control of light’s angular momentum from lasers has remained elusive. Here, we report a metasurface-enhanced laser that overcomes this limitation. We demonstrate new high-purity OAM states with quantum numbers reaching  = 100 and non-symmetric vector vortex beams that lase simultaneously on independent OAM states as much as Δ = 90 apart, an extreme violation of previous symmetric spin–orbit lasing devices. Our laser conveniently outputs in the visible, producing new OAM states of light as well as all previously reported OAM modes from lasers, offering a compact and power-scalable source that harnesses intracavity structured matter for the creation of arbitrary chiral states of structured light.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Metasurface design and characterization.
Fig. 2: Metasurface laser and modes.
Fig. 3: Extreme SO lasing.
Fig. 4: Ultrapure OAM lasing modes.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the plots and multimedia files within this paper are available from the corresponding author upon reasonable request.

References

  1. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016).

    ADS  Google Scholar 

  2. Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).

    Google Scholar 

  3. Wang, J. Advances in communications using optical vortices. Photon. Res. 4, B14–B28 (2016).

    Google Scholar 

  4. Wang, J. Data information transfer using complex optical fields: a review and perspective. Chin. Opt. Lett. 15, 030005 (2017).

    ADS  Google Scholar 

  5. Ndagano, B., Nape, I., Cox, M. A., Rosales-Guzman, C. & Forbes, A. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightw. Technol. 36, 292–301 (2018).

    ADS  Google Scholar 

  6. Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 375, 20150442 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17111–17146 (2018).

    Google Scholar 

  8. Moreau, P. A., Toninelli, E., Gregory, T. & Padgett, M. J. Ghost imaging using optical correlations. Laser Photon. Rev. 12, 1700143 (2018).

    ADS  Google Scholar 

  9. Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

    ADS  Google Scholar 

  10. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Google Scholar 

  11. Padgett, M. J. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    ADS  Google Scholar 

  12. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Google Scholar 

  13. Padgett, M. J. Orbital angular momentum 25 years on. Opt. Express 25, 11265–11274 (2017).

    ADS  Google Scholar 

  14. Heckenberg, N., McDuff, R., Smith, C. & White, A. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992).

    ADS  Google Scholar 

  15. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    ADS  Google Scholar 

  16. Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

    ADS  Google Scholar 

  17. Brasselet, E. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys. Rev. Lett. 121, 033901 (2018).

    ADS  Google Scholar 

  18. Nassiri, M. G. & Brasselet, E. Multispectral management of the photon orbital angular momentum. Phys. Rev. Lett. 121, 213901 (2018).

    ADS  Google Scholar 

  19. Nersisyan, S. R., Tabiryan, N. V., Steeves, D. M. & Kimball, B. R. The promise of diffractive waveplates. Opt. Photon. News 21, 40–45 (2010).

    ADS  Google Scholar 

  20. Rubano, A., Cardano, F., Piccirillo, B. & Marrucci, L. Q-plate technology: a progress review. J. Opt. Soc. Am. B 36, D70–D87 (2019).

    Google Scholar 

  21. Piccirillo, B., Slussarenko, S., Marrucci, L. & Santamato, E. The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology. Riv. Nuovo Cimento 36, 501–555 (2013).

    Google Scholar 

  22. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).

    Google Scholar 

  23. Milione, G., Sztul, H., Nolan, D. & Alfano, R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    ADS  Google Scholar 

  24. Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).

    ADS  Google Scholar 

  25. Rosales-Guzmán, C., Ndagano, B. & Forbes, A. A review of complex vector light fields and their applications. J. Opt. 20, 123001 (2018).

    ADS  Google Scholar 

  26. Cardano, F. & Marrucci, L. Spin–orbit photonics. Nat. Photon. 9, 776–778 (2015).

    Google Scholar 

  27. Otte, E., Alpmann, C. & Denz, C. Polarization singularity explosions in tailored light fields. Laser Photon. Rev. 12, 1700200 (2018).

    ADS  Google Scholar 

  28. Forbes, A. Controlling light’s helicity at the source: orbital angular momentum states from lasers. Philos. Trans. R. Soc. A 375, 20150436 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  29. Omatsu, T., Miyamoto, K. & Lee, A. J. Wavelength-versatile optical vortex lasers. J. Opt. 19, 123002 (2017).

    ADS  Google Scholar 

  30. Wang, X. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533–1556 (2018).

    Google Scholar 

  31. Forbes, A. Structured light from lasers. Laser Photon. Rev. 13, 1900140 (2019).

    ADS  Google Scholar 

  32. Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327–332 (2016).

    ADS  Google Scholar 

  33. Maguid, E. et al. Topologically controlled intracavity laser modes based on Pancharatnam–Berry phase. ACS Photonics 5, 1817–1821 (2018).

    Google Scholar 

  34. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    ADS  Google Scholar 

  35. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    ADS  Google Scholar 

  36. Zambon, N. C. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    ADS  Google Scholar 

  37. Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).

    ADS  Google Scholar 

  38. Xie, Z. et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 7, 18001 (2018).

    ADS  Google Scholar 

  39. Hayenga, W. E. et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics 6, 1895–1901 (2019).

    Google Scholar 

  40. Seghilani, M. S. et al. Vortex laser based on III–V semiconductor metasurface: direct generation of coherent Laguerre–Gauss modes carrying controlled orbital angular momentum. Sci. Rep. 6, 38156 (2016).

    ADS  Google Scholar 

  41. Stellinga, D. et al. An organic vortex laser. ACS Nano 12, 2389–2394 (2018).

    Google Scholar 

  42. Mao, D. et al. Ultrafast all-fiber based cylindrical-vector beam laser. Appl. Phys. Lett. 110, 021107 (2017).

    ADS  Google Scholar 

  43. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Google Scholar 

  44. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Devlin, R. C. et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt. Express 25, 377–393 (2017).

    ADS  Google Scholar 

  46. Baumann, S., Kalb, D., MacMillan, L. & Galvez, E. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express 17, 9818–9827 (2009).

    ADS  Google Scholar 

  47. Sephton, B., Dudley, A. & Forbes, A. Revealing the radial modes in vortex beams. Appl. Opt. 55, 7830–7835 (2016).

    ADS  Google Scholar 

  48. Schwob, C. et al. Transverse effects and mode couplings in OPOS. Appl. Phys. B 66, 685–699 (1998).

    ADS  Google Scholar 

  49. Yao, J. et al. Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration. Thin Solid Films 516, 1237–1241 (2008).

    ADS  Google Scholar 

  50. Taira, T., Sasaki, T. & Kobayashi, T. Polarization control of Q-switch solid-state lasers with intracavity SHG crystals. Electron. Commun. Jpn 2 75, 1–12 (1992).

    Google Scholar 

Download references

Acknowledgements

A.V. acknowledges support from the Claude Leon Foundation. This work was performed, in part, at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF under award no. 1541959. CNS is a part of Harvard University. F.C. is supported by funding from the Air Force Office of Scientific Research (grant nos. MURI: FA9550-14-1-0389, FA9550-16-1-0156), and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (award no. OSR-2016-CRG5-2995). Y.-W.H. and C.-W.Q. are supported by the National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Program (CRP award no. NRF-CRP15-2015-03).

Author information

Authors and Affiliations

Authors

Contributions

H.S., D.N., B.S. and A.V. performed experiments with custom optics designed and fabricated by Y.-W.H. and A.A. All authors contributed to data analysis and writing of the manuscript. A.F., F.C. and C.-W.Q. supervised the project.

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information with 16 figures, 1 table and 15 references.

Supplementary Video 1

A numerical simulation of the laser cavity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sroor, H., Huang, YW., Sephton, B. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 14, 498–503 (2020). https://doi.org/10.1038/s41566-020-0623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0623-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing