Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissipative solitons in photonic molecules

Abstract

Many physical systems display quantized energy states. In optics, interacting resonant cavities show a transmission spectrum with split eigenfrequencies, similar to the split energy levels that result from interacting states in bonded multi-atomic—that is, molecular—systems. Here, we study the nonlinear dynamics of photonic diatomic molecules in linearly coupled microresonators and demonstrate that the system supports the formation of self-enforcing solitary waves when a laser is tuned across a split energy level. The output corresponds to a frequency comb (microcomb) whose characteristics in terms of power spectral distribution are unattainable in single-mode (atomic) systems. Photonic molecule microcombs are coherent, reproducible and reach high conversion efficiency and spectral flatness while operated with a laser power of a few milliwatts. These properties can favour the heterogeneous integration of microcombs with semiconductor laser technology and facilitate applications in optical communications, spectroscopy and astronomy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photonic molecule based on linearly coupled microresonators.
Fig. 2: Dissipative soliton dynamics in photonic molecules.
Fig. 3: Control of photonic molecules and tunable microcombs.
Fig. 4: Temporal measurement of a photonic molecule microcomb.
Fig. 5: Relatively flat photonic molecule microcombs.

Data availability

The raw data used in this work can be accessed at https://doi.org/10.5281/zenodo.4321076.

References

  1. 1.

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  4. 4.

    Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36–40 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photon. 2, 737–740 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  9. 9.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Bao, C. et al. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  Google Scholar 

  15. 15.

    Nazemosadat, E. et al. Switching dynamics of dark-pulse Kerr comb states in optical microresonators. Preprint at https://arxiv.org/pdf/1910.11035.pdf (2019).

  16. 16.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Parra-Rivas, P., Gomila, D., Knobloch, E., Coen, S. & Gelens, L. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett. 41, 2402–2405 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Liao, K. et al. Photonic molecule quantum optics. Adv. Opt. Photon. 12, 60–134 (2020).

    Article  Google Scholar 

  21. 21.

    Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, 23–28 (2015).

    Article  Google Scholar 

  23. 23.

    Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Fuji, S. et al. Analysis of mode coupling assisted Kerr comb generation in normal dispersion system. IEEE Photon. J. 10, 4501511 (2018).

    Google Scholar 

  25. 25.

    Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Bao, C. et al. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett. 121, 257401 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Lobanov, V. E., Lihachev, G., Kippenberg, T. J. & Gorodetsky, M. L. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express 23, 7713–7721 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Ye, Z., Twayana, K., Andrekson, P. A. & Torres-Company, V. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express 27, 35719–35727 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Suh, M.-G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Xiang, C. et al. Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    ADS  Article  Google Scholar 

  36. 36.

    Fülöp, A. et al. Active feedback stabilization of normal-dispersion microresonator combs. In Proc. 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, paper CD_P_45 (Optical Society of America, 2017).

  37. 37.

    Del’Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    Andrekson, P. A. & Westlund, M. Nonlinear optical fiber based high resolution all-optical waveform sampling. Laser Photon. Rev. 1, 231–248 (2007).

    ADS  Article  Google Scholar 

  39. 39.

    Hult, J. A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25, 3770–3775 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. M. Weiner for critically reading a first draft of the manuscript. The simulations for Fig. 2 were performed on resources at Chalmers Centre for Computational Science and Engineering (C3SE), provided by the Swedish National Infrastructure for Computing (SNIC). The devices demonstrated in this work were fabricated in part at Myfab Chalmers. We acknowledge funding support from the European Research Council (ERC, CoG GA 771410), the Swedish Research Council (2016-03960, 2016-06077, 2020-00453 and 2015-00535) and H2020 Marie Skłodowska Curie Actions (Innovative Training Network Microcomb, GA 812818).

Author information

Affiliations

Authors

Contributions

Ó.B.H. conducted the experiments with input from Z.Y. Ó.B.H. and F.R.A.-S. carried out the numerical simulations. Z.Y. and Ó.B.H. designed the samples. Z.Y. fabricated the devices, and K.T. and Ó.B.H. characterized them. Ó.B.H., F.R.A.-S., P.A.A., M.K., J.S. and V.T.-C. analysed the data and discussed the results. V.T.-C., Ó.B.H. and F.R.A.-S. prepared the manuscript with input from all co-authors. V.T.-C. supervised the project with input from J.S.

Corresponding author

Correspondence to Victor Torres-Company.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Lute Maleki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helgason, Ó.B., Arteaga-Sierra, F.R., Ye, Z. et al. Dissipative solitons in photonic molecules. Nat. Photonics 15, 305–310 (2021). https://doi.org/10.1038/s41566-020-00757-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing