Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2

This article has been updated

Abstract

In recent years, there has been ongoing effort in achieving efficient transport of excitons in monolayer transition metal dichalcogenides subjected to highly non-uniform strain. Here we investigate the transport of excitons and trions in monolayer semiconductor WS2 subjected to controlled non-uniform mechanical strain. An atomic force microscope (AFM)-based setup is applied to actively control and tune the strain profiles by indenting the monolayer with an AFM tip. Optical spectroscopy is used to reveal the dynamics of the excited carriers. The non-uniform strain configuration locally changes the valence and conduction bands of WS2, giving rise to effective forces attracting excitons and trions towards the point of maximum strain underneath the AFM tip. We observe large changes in the photoluminescence spectra of WS2 under strain, which we interpret using a drift–diffusion model. We show that the transport of neutral excitons, a process that was previously thought to be efficient in non-uniformly strained two-dimensional semiconductors and termed as funnelling, is negligible at room temperature, in contrast to previous observations. Conversely, we discover that redistribution of free carriers under non-uniform strain profiles leads to highly efficient conversion of excitons to trions. Conversion efficiency reaches up to about 100% even without electrical gating. Our results explain inconsistencies in previous experiments and pave the way towards new types of optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Photoluminescence spectra of samples.
Fig. 3: Comparison between the experimentally measured photoluminescence spectra and the model predictions.
Fig. 4: Spatial dependency of properties of sample A.
Fig. 5: Spatial maps of the ratio between the total trion emission and the exciton emission for sample A.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 27 March 2020

    In the HTML version of this Article, Fig. 5 appeared with the caption for Fig. 4 and vice versa; this has now been amended. The PDF version is correct.

References

  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  2. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  3. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  4. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  5. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. Valleytronics. The valley Hall effect in MoS transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  6. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  ADS  Google Scholar 

  7. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  ADS  Google Scholar 

  8. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  ADS  Google Scholar 

  9. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  ADS  Google Scholar 

  10. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  ADS  Google Scholar 

  11. Roy, T. et al. Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6259–6264 (2014).

    Article  Google Scholar 

  12. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  ADS  Google Scholar 

  13. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photon. 4, 2962–2970 (2017).

    Article  Google Scholar 

  14. Akama, T. et al. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator. Sci. Rep. 7, 11967 (2017).

    Article  ADS  Google Scholar 

  15. Liu, K. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014).

    Article  ADS  Google Scholar 

  16. Lee, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  17. Roldán, R., Castellanos-Gomez, A., Cappelluti, E. & Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015).

    Article  ADS  Google Scholar 

  18. Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 (2012).

    Article  ADS  Google Scholar 

  19. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  ADS  Google Scholar 

  20. Niehues, I. et al. Strain control of exciton–phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751–1757 (2018).

    Article  ADS  Google Scholar 

  21. Christiansen, D. et al. Phonon sidebands in monolayer transition metal dichalcogenides. Phys. Rev. Lett. 119, 187402 (2017).

    Article  ADS  Google Scholar 

  22. Lloyd, D. et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16, 5836–5841 (2016).

    Article  ADS  Google Scholar 

  23. Lazić, S. et al. Scalable interconnections for remote indirect exciton systems based on acoustic transport. Phys. Rev. B 89, 085313 (2014).

    Article  ADS  Google Scholar 

  24. Manasevit, H. M., Gergis, I. S. & Jones, A. B. Electron mobility enhancement in epitaxial multilayer Si-Si1−xGex alloy films on (100) Si. Appl. Phys. Lett. 41, 464–466 (1982).

    Article  ADS  Google Scholar 

  25. People, R. et al. Modulation doping in GexSi1−x/Si strained layer heterostructures. Appl. Phys. Lett. 45, 1231–1233 (1984).

    Article  ADS  Google Scholar 

  26. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

    Article  ADS  Google Scholar 

  27. Tyurnina, A. V. et al. Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photon. 6, 516–524 (2019).

    Article  Google Scholar 

  28. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  29. Dukic, M., Adams, J. D. & Fantner, G. E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci. Rep. 5, 16393 (2015).

    Article  ADS  Google Scholar 

  30. Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).

    Article  Google Scholar 

  31. Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe2. Appl. Phys. Lett. 108, 042104 (2016).

    Article  ADS  Google Scholar 

  32. Vella, D. & Davidovitch, B. Indentation metrology of clamped, ultra-thin elastic sheets. Soft Matter 13, 2264–2278 (2017).

    Article  ADS  Google Scholar 

  33. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

    Article  Google Scholar 

  34. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    Article  ADS  Google Scholar 

  35. Ovchinnikov, D., Allain, A., Huang, Y.-S., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 8, 8174–8181 (2014).

    Article  Google Scholar 

  36. Siviniant, J., Scalbert, D., Kavokin, A. V., Coquillat, D. & Lascaray, J.-P. Chemical equilibrium between excitons, electrons, and negatively charged excitons in semiconductor quantum wells. Phys. Rev. B 59, 1602–1604 (1999).

    Article  ADS  Google Scholar 

  37. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  ADS  Google Scholar 

  38. Wang, Y. et al. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562–2572 (2015).

    Article  Google Scholar 

  39. Plechinger, G. et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solid. Rap. Res. Lett. 9, 457–461 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Netz for fruitful discussions. We also thank K. Höflich for technical support. This work was supported by the European Research Council Starting grant 639739, and DFG CRC/TRR 227.

Author information

Authors and Affiliations

Authors

Contributions

M.G.H. and K.I.B. planned and designed the experiment and wrote the paper. M.G.H. and J.N.K. performed the nanoindentation experiments. M.G.H., J.N.K. and M.Q. fabricated the samples. The experiments, data analysis and the theoretical model were done by M.G.H. K.G. contributed to the theoretical model.

Corresponding author

Correspondence to Kirill I. Bolotin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harats, M.G., Kirchhof, J.N., Qiao, M. et al. Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics 14, 324–329 (2020). https://doi.org/10.1038/s41566-019-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0581-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing