Synthetic chiral light for efficient control of chiral light–matter interaction


Light is a very powerful and precise tool, allowing us to control1, shape2,3 and create new phases4 of matter. In such tasks, the magnetic component of a light wave is essential in defining the wave’s helicity, but it influences the optical response of matter only weakly. Chiral molecules offer a typical example, in which the weakness of magnetic interactions hampers our ability to control the strength of their chiro-optical response5, limiting it at several orders of magnitude below the full potential. Here, we introduce and theoretically analyse a new type of chiral light: freely propagating, locally and globally chiral electric fields, which interact with chiral matter extremely efficiently. We show that this synthetic chiral light enables full control over the intensity, polarization and propagation direction of the nonlinear enantio-sensitive optical response of randomly oriented chiral molecules. This response can be quenched or enhanced at will in a desired enantiomer, opening up efficient ways to control chiral matter and for ultrafast imaging of chiral dynamics in gases, liquids and solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Synthetic chiral light.
Fig. 2: Practical set-up.
Fig. 3: Chiral response in HHG using standard chiral light.
Fig. 4: Near-field enantio-sensitive HHG using synthetic chiral light.
Fig. 5: Far-field harmonic intensity and chiral dichroism.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Shapiro, M. & Brumer, P. in Principles of the Quantum Control of Molecular Processes 250 (Wiley, 2003).

  2. 2.

    Matthews, M. et al. Amplification of intense light fields by nearly free electrons. Nat. Phys. 14, 695–700 (2018).

    Google Scholar 

  3. 3.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS  Google Scholar 

  4. 4.

    Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS  Google Scholar 

  5. 5.

    Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. Comprehensive Chiroptical Spectroscopy (Wiley, 2013).

  6. 6.

    Ordonez, A. F. & Smirnova, O. Generalized perspective on chiral measurements without magnetic interactions. Phys. Rev. A 98, 063428 (2018).

    ADS  Google Scholar 

  7. 7.

    Ritchie, B. Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions. Phys. Rev. A 13, 1411–1415 (1976).

    ADS  Google Scholar 

  8. 8.

    Powis, I. Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid. J. Chem. Phys. 112, 301–310 (2000).

    ADS  Google Scholar 

  9. 9.

    Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

    ADS  Google Scholar 

  10. 10.

    Lux, C. et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012).

    Google Scholar 

  11. 11.

    Beaulieu, S. et al. Photoexcitation circular dichroism in chiral molecules. Nat. Phys. 14, 484–489 (2018).

    Google Scholar 

  12. 12.

    Kastner, A. et al. Enantiomeric excess sensitivity to below one percent by using femtosecond photoelectron circular dichroism. ChemPhysChem 17, 1119–1122 (2016).

    Google Scholar 

  13. 13.

    Fischer, P., Wiersma, D. S., Righini, R., Champagne, B. & Buckingham, A. D. Three-wave mixing in chiral liquids. Phys. Rev. Lett. 85, 4253–4256 (2000).

    ADS  Google Scholar 

  14. 14.

    Belkin, M. A., Han, S. H., Wei, X. & Shen, Y. R. Sum-frequency generation in chiral liquids near electronic resonance. Phys. Rev. Lett. 87, 113001 (2001).

    ADS  Google Scholar 

  15. 15.

    Fischer, P., Beckwitt, K., Wise, F. & Albrecht, A. The chiral specificity of sum-frequency generation in solutions. Chem. Phys. Lett. 352, 463–468 (2002).

    ADS  Google Scholar 

  16. 16.

    Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005).

    Google Scholar 

  17. 17.

    Ji, N., Ostroverkhov, V., Belkin, M., Shiu, Y.-J. & Shen, Y.-R. Toward chiral sum-frequency spectroscopy. J. Am. Chem. Soc. 128, 8845–8848 (2006).

    Google Scholar 

  18. 18.

    Belkin, M. A., Kulakov, T. A., Ernst, K.-H., Yan, L. & Shen, Y. R. Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys. Rev. Lett. 85, 4474–4477 (2000).

    ADS  Google Scholar 

  19. 19.

    Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013).

    ADS  Google Scholar 

  20. 20.

    Tutunnikov, I., Gershnabel, E., Gold, S. & Averbukh, I. S. Selective orientation of chiral molecules by laser fields with twisted polarization. J. Phys. Chem. Lett. 9, 1105–1111 (2018).

    Google Scholar 

  21. 21.

    Neufeld, O., Ayuso, D., Decleva, P., Ivanov, M. Y., Smirnova, O. & Cohen, O. Ultrasensitive chiral spectroscopy by dynamical symmetry breaking in high harmonic generation. Phys. Rev. X 9, 031002 (2019).

    Google Scholar 

  22. 22.

    Cireasa, R. et al. Probing molecular chirality on a sub-femtosecond timescale. Nat. Phys. 11, 654–658 (2015).

    Google Scholar 

  23. 23.

    Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    ADS  Google Scholar 

  24. 24.

    Neufeld, O., Podolsky, D. & Cohen, O. Floquet group theory and its application to selection rules in harmonic generation. Nat. Commun. 10, 405 (2019).

    ADS  Google Scholar 

  25. 25.

    Eibenberger, S., Doyle, J. & Patterson, D. Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett. 118, 123002 (2017).

    ADS  Google Scholar 

  26. 26.

    Harris, A. B., Kamien, R. D. & Lubensky, T. C. Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745–1757 (1999).

    ADS  Google Scholar 

  27. 27.

    Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    ADS  Google Scholar 

  28. 28.

    Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815–819 (2015).

    Google Scholar 

  29. 29.

    Ordonez, A. F. & Smirnova, O. Propensity rules in photoelectron circular dichroism in chiral molecules. I. Chiral hydrogen. Phys. Rev. A 99, 043416 (2019).

    ADS  Google Scholar 

  30. 30.

    Owens, A., Yachmenev, A., Yurchenko, S. N. & Küpper, J. Climbing the rotational ladder to chirality. Phys. Rev. Lett. 121, 193201 (2018).

    ADS  Google Scholar 

  31. 31.

    Giordmaine, J. A. Nonlinear optical properties of liquids. Phys. Rev. 138, A1599–A1606 (1965).

    ADS  MathSciNet  Google Scholar 

  32. 32.

    Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

  33. 33.

    Smirnova, O. & Ivanov, M. in Multielectron High Harmonic Generation: Simple Man on a Complex Plane 201–256 (Wiley, 2014).

  34. 34.

    Smirnova, O., Mairesse, Y. & Patchkovskii, S. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields. J. Phys. B 48, 234005 (2015).

    ADS  Google Scholar 

  35. 35.

    Ayuso, D., Decleva, P., Patchkowskii, S. & Smirnova, O. Chiral dichroism in bi-elliptical high-order harmonic generation. J. Phys. B 51, 06LT01 (2018).

    Google Scholar 

  36. 36.

    Ayuso, D., Decleva, P., Patchkowskii, S. & Smirnova, O. Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model. J. Phys. B 51, 124002 (2018).

    ADS  Google Scholar 

  37. 37.

    Lebedev, V. I. & Laikov, D. N. A quadrature formula for the sphere of the 131st algebraic order of accuracy. Doklady Math. 59, 477–481 (1999).

    Google Scholar 

  38. 38.

    Toffoli, D., Stener, M., Fronzoni, G. & Decleva, P. Convergence of the multicenter B-spline DFT approach for the continuum. Chem. Phys. 276, 25–43 (2002).

    Google Scholar 

  39. 39.

    Turchini, S. et al. Circular dichroism in photoelectron spectroscopy of free chiral molecules: experiment and theory on methyl-oxirane. Phys. Rev. A 70, 014502 (2004).

    ADS  Google Scholar 

  40. 40.

    Stener, M., Fronzoni, G., Tommaso, D. D. & Decleva, P. Density functional study on the circular dichroism of photoelectron angular distribution from chiral derivatives of oxirane. J. Chem. Phys. 120, 3284–3296 (2004).

    ADS  Google Scholar 

  41. 41.

    Stranges, S. et al. Valence photoionization dynamics in circular dichroism of chiral free molecules: the methyl-oxirane. J. Chem. Phys. 122, 244303 (2005).

    ADS  Google Scholar 

  42. 42.

    Di Tommaso, D., Stener, M., Fronzoni, G. & Decleva, P. Conformational effects on circular dichroism in the photoelectron angular distribution. ChemPhysChem 7, 924–934 (2006).

    Google Scholar 

  43. 43.

    Turchini, S. et al. Conformational effects in photoelectron circular dichroism of alaninol. ChemPhysChem 10, 1839–1846 (2009).

    Google Scholar 

  44. 44.

    Kushawaha, R. K. et al. From double-slit interference to structural information in simple hydrocarbons. Proc. Natl Acad. Sci. USA 110, 15201–15206 (2013).

    ADS  Google Scholar 

  45. 45.

    Ayuso, D., Palacios, A., Decleva, P. & Martin, F. Ultrafast charge dynamics in glycine induced by attosecond pulses. Phys. Chem. Chem. Phys. 19, 19767–19776 (2017).

    Google Scholar 

  46. 46.

    Serbinenko, V. & Smirnova, O. Multidimensional high harmonic spectroscopy: a semi-classical perspective on measuring multielectron rearrangement upon ionization. J. Phys. B 46, 171001 (2013).

    ADS  Google Scholar 

  47. 47.

    Bruner, B. D. et al. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields. Faraday Discuss. 194, 369–405 (2016).

    ADS  Google Scholar 

  48. 48.

    Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Google Scholar 

  49. 49.

    Koralek, J. D. et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 9, 1353 (2018).

    ADS  Google Scholar 

  50. 50.

    Luu, T. T. et al. Extreme-ultraviolet high-harmonic generation in liquids. Nat. Commun. 9, 3723 (2018).

    ADS  Google Scholar 

  51. 51.

    Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    ADS  Google Scholar 

  52. 52.

    Vampa, G. & Brabec, T. Merge of high harmonic generation from gases and solids and its implications for attosecond science. J. Phys. B 50, 083001 (2017).

    ADS  Google Scholar 

Download references


We thank F. Morales for discussions. D.A., A.F.O. and O.S. acknowledge support from the DFG SPP 1840 ‘Quantum Dynamics in Tailored Intense Fields’ and DFG grant SM 292/5-2; A.F.O. and O.S. acknowledge support from MEDEA. The MEDEA project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 641789. This work was supported by the Israel Science Foundation (grant no. 1781/18) and the Wolfson Foundation. O.N. acknowledges the support of the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

Author information




D.A., A.F.O. and O.S. developed the concepts of locally and globally chiral fields. D.A., A.F.O. and O.S. developed the theory of chiral correlation functions. O.N., G.L. and O.C. developed a concept of reflection and inversion free fields, which are locally chiral, and the group theory-based analysis of such fields. O.N. proved the connection between the symmetry-based description of locally chiral fields and reflection and inversion free fields. O.N. and O.C. formulated the degree of chirality of light fields. D.A., P.D., M.I. and O.S. developed and computed the hybrid DFT–strong-field description of the microscopic and macroscopic HHG response in propylene oxide. O.N. computed the DFT-based microscopic HHG response in bromochlorofluoromethane. D.A., A.F.O., M.I. and O.S. wrote the initial version of the manuscript. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to David Ayuso or Misha Ivanov or Olga Smirnova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayuso, D., Neufeld, O., Ordonez, A.F. et al. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 13, 866–871 (2019).

Download citation

Further reading