Precision control of gamma-ray polarization using a crossed helical undulator free-electron laser

Abstract

Polarized gamma-ray beams are a precise and selective probe for studying fundamental questions about nuclear structure and hadron properties. Improvements to this probe require new experimental approaches that can produce high-flux gamma-ray beams with easily switchable pure polarization states. Here, we report an optics-free method to precisely control the polarization of a Compton gamma-ray beam. Using a free-electron laser (FEL) oscillator with two helical undulator magnets of opposite helicities, we have produced a linearly polarized FEL beam with a variable polarization direction and an unprecedented degree of linear polarization, PLin = 0.997. With this FEL as a photon drive, we are able to generate Compton gamma-ray beams having either left/right-circular polarization or rotatable linear polarization. The linearly polarized gamma-ray beam has been characterized and shows PLin = 0.97. This demonstrated polarization control technique is well suited for high-flux gamma-ray production with any level of FEL power.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up for the FEL and gamma-beam polarization control.
Fig. 2: Rotation of the FEL beam linear polarization by continuously varying the phase delay ΔϕBun.
Fig. 3: Gamma-beam transverse profile measured using an imaging system during one cycle rotation of the linear polarization.
Fig. 4: Measurement of gamma-ray linear polarization at 6 MeV using a photonuclear-reaction-based gamma-ray polarimeter.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Diambrini Palazzi, G. High-energy bremsstrahlung and electron pair production in thin crystals. Rev. Mod. Phys. 40, 611–633 (1968).

  2. 2.

    Galy, J., Maučec, M., Hamilton, D. J., Edwards, R. & Magill, J. Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9, 23 (2007).

  3. 3.

    Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867–871 (2011).

  4. 4.

    Arutyunian, F. R. & Tumanian, V. A. The Compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 4, 176–178 (1963).

  5. 5.

    Milburn, R. H. Electron scattering by an intense polarized photon field. Phys. Rev. Lett. 10, 75–77 (1963).

  6. 6.

    Federici, L. et al. Backward Compton scattering of laser light against high-energy electrons: the LADON photon beam at Frascati. Il Nuovo Cimento B 59, 247–256 (1980).

  7. 7.

    Sandorfi, A. M. et al. High energy gamma ray beams from Compton backscattered laser light. IEEE Trans. Nucl. Sci. 30, 3083–3087 (1983).

  8. 8.

    Babusci, D. et al. Project GRAAL: the scientific case. Il Nuovo Cimento A 103, 1555–1576 (1990).

  9. 9.

    Litvinenko, V. N. et al. Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett. 78, 4569–4572 (1997).

  10. 10.

    Kezerashvili, G. Y., Milov, A. M., Muchnoi, N. Y. & Usov, A. P. A Compton source of high energy polarized tagged γ-ray beams. The ROKK-1M facility. Nucl. Instrum. Methods Phys. Res. B 145, 40–48 (1998).

  11. 11.

    Nakano, T. et al. Multi-GeV laser-electron photon project at SPring-8. Nucl. Phys. A 684, 71–79 (2001).

  12. 12.

    Amano, S. et al. Several-MeV γ-ray generation at NewSUBARU by laser Compton backscattering. Nucl. Instrum. Methods Phys. Res. A 602, 337–341 (2009).

  13. 13.

    Phuoc, K. T. et al. All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012).

  14. 14.

    Powers, N. D. et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Photon. 8, 28–31 (2014).

  15. 15.

    Ur, C. A. Gamma beam system at ELI-NP. AIP Conf. Proc. 1645, 237–245 (2015).

  16. 16.

    Schaerf, C. Polarized gamma-ray beams. Phys. Today 58, 44–50 (2005).

  17. 17.

    Speth, J. & van der Woude, A. Giant resonances in nuclei. Rep. Prog. Phys. 44, 719–786 (1981).

  18. 18.

    Kneissl, U., Pitz, H. H. & Zilges, A. Investigation of nuclear structure by resonance fluorescence scattering. Prog. Part. Nucl. Phys. 37, 349–433 (1996).

  19. 19.

    Pietralla, N. et al. Parity measurements of nuclear levels using a free-electron-laser generated γ-ray beam. Phys. Rev. Lett. 88, 012502 (2001).

  20. 20.

    Pietralla, N., Weller, H. R., Litvinenko, V. N., Ahmed, M. W. & Tonchev, A. P. Parity measurements of nuclear dipole excitations using FEL-generated γ-rays at HIγS. Nucl. Instrum. Methods Phys. Res. A 483, 556–559 (2002).

  21. 21.

    Goertz, St., Meyer, W. & Reicherz, G. Polarized H, D and 3He targets for particle physics experiments. Prog. Part. Nucl. Phys. 49, 403–489 (2002).

  22. 22.

    Drell, S. D. & Hearn, A. C. Exact sum rule for nucleon magnetic moments. Phys. Rev. Lett. 16, 908–911 (1966).

  23. 23.

    Gerasimov, S. B. A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei. Sov. J. Nucl. Phys. 2, 430–433 (1966).

  24. 24.

    Ahrens, J. et al. Helicity dependence of γp below 450 MeV and contribution to the Gerasimov–Drell–Hearn sum rule. Phys. Rev. Lett. 84, 5950–5954 (2000).

  25. 25.

    Ahrens, J. et al. First measurement of the Gerasimov–Drell–Hearn integral for 1H from 200 to 800 MeV. Phys. Rev. Lett. 87, 022003 (2001).

  26. 26.

    Drechsel, D., Pasquini, B. & Vanderhaeghen, M. Dispersion relations in real and virtual Compton scattering. Phys. Rep. 378, 99–205 (2003).

  27. 27.

    Schumacher, M. Polarizability of the nucleon and Compton scattering. Prog. Part. Nucl. Phys. 55, 567–646 (2005).

  28. 28.

    Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

  29. 29.

    Renieri, A. Storage ring operation of the free-electron laser: the amplifier. Il Nuovo Cimento B 53, 160–178 (1979).

  30. 30.

    Bonifacio, R., Pellegrini, C. & Narducci, L. M. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

  31. 31.

    Neil, G. R. et al. Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery. Phys. Rev. Lett. 84, 662–665 (2000).

  32. 32.

    Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

  33. 33.

    Weller, H. R. et al. Research opportunities at the upgraded HI γS facility. Prog. Part. Nucl. Phys. 62, 257–303 (2009).

  34. 34.

    Wu, Y. K., Vinokurov, N. A., Mikhailov, S., Li, J. & Popov, V. High-gain lasing and polarization switch with a distributed optical-klystron free-electron laser. Phys. Rev. Lett. 96, 224801 (2006).

  35. 35.

    Kim, K. J. A synchrotron radiation source with arbitrarily adjustable elliptical polarization. Nucl. Instrum. Methods Phys. Res. 219, 425–429 (1984).

  36. 36.

    Kim, K.-J. Circular polarization with crossed-planar undulators in high-gain FELs. Nucl. Instrum. Methods Phys. Res. A 445, 329–332 (2000).

  37. 37.

    Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. Quantum Electrodynamics 2nd edn (Butterworth-Heinemann, 1982).

  38. 38.

    Park, S. H., Litvinenko, V. N., Tornow, W. & Montgomery, C. Spatial distribution and polarization of γ-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL. Nucl. Instrum. Methods Phys. Res. A 475, 425–431 (2001).

  39. 39.

    Sun, C. & Wu, Y. K. Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. Spec. Top. Accel. Beams 14, 044701 (2011).

  40. 40.

    Arenhövel, H. & Sanzone, M. Photodisintegration of the Deuteron: A Review of Theory and Experiment (Springer, 1991).

  41. 41.

    Arenhövel, H. Electroweak processes in few-nucleon systems. Few-Body Syst. 26, 43–98 (1999).

  42. 42.

    Chen, J.-W. & Savage, M. J. np for big-bang nucleosynthesis. Phys. Rev. C 60, 065205 (1999).

  43. 43.

    Rupak, G. Precision calculation of np cross section for big-bang nucleosynthesis. Nucl. Phys. A 678, 405–423 (2000).

  44. 44.

    Winyard, R. A., Lutkin, J. E. & McBeth, G. W. Pulse shape discrimination in inorganic and organic scintillators. I. Nucl. Instrum. Methods 95, 141–153 (1971).

  45. 45.

    Mueller, J. M. et al. Tests of a novel method to assay SNM using polarized photofission and its sensitivity in the presence of shielding. Nucl. Instrum. Methods Phys. Res. A 776, 107–113 (2015).

  46. 46.

    Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

  47. 47.

    Deng, H. et al. Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. Spec. Top. Accel. Beams 17, 020704 (2014).

  48. 48.

    Ferrari, E. et al. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5, 13531 (2015).

  49. 49.

    Ding, Y. & Huang, Z. Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser. Phys. Rev. Spec. Top. Accel. Beams 11, 030702 (2008).

  50. 50.

    Kim, K.-J., Shvyd’ko, Y. & Reiche, S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008).

Download references

Acknowledgements

This research was carried out at the High Intensity Gamma-ray Source facility at Triangle Universities Nuclear Laboratory (TUNL), a US Department of Energy (DOE) Centre of Excellence. Y.K.W., J.Y., H.H., P.L., S.F.M., V.G.P., M.W.A. and J.M.M. acknowledge DOE support under grant no. DE-FG02-97ER41033. M.W.A., J.M.M. and Y.K.W. acknowledge support from the US Domestic Nuclear Detection Office, Academic Research Initiative grants nos. 2010-DN-077-ARI-02 and 2008-DN-077-ARI1010. M.W.A. also acknowledges DOE support under grant no. DE-SC000536. The authors thank G. Swift for designing and building the mechanical system for FEL polarization diagnostics, P. Morcombe and P. Wallace for proofreading the manuscript, and H. Greenside and D. Straub for helping improve the abstract. The authors are also grateful for the support provided by the engineering and technical staff at Duke Free Electron Laser Laboratory/TUNL.

Author information

V.N.L. and Y.K.W. conceived and proposed several crossed helical undulator schemes. V.N.L., N.A.V., S.F.M., Y.K.W., H.H., V.G.P. and J.L. were responsible for designing, constructing and measuring helical undulators, as well as assessing the impact of electron beam dynamics, and developing magnet power supplies and related accelerator controls for the experiment. Y.K.W., J.Y. and V.G.P. conceived, developed, installed and calibrated the high-precision FEL beam polarimeter. J.M.M., M.W.A. and M.H.S. conceived and developed the gamma-ray beam polarimeter. J.Y., Y.K.W., H.H., S.F.M., J.M.M. and M.H.S. conducted the experiments. V.N.L., N.A.V. and S.H. provided theoretical analysis and projections. J.Y., P.L., J.M.M. and Y.K.W. interpreted data and produced figures. J.Y. and Y.K.W. wrote the paper. All authors discussed the results and suggested improvements.

Correspondence to Ying K. Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark