Experimental realization of a Weyl exceptional ring



Weyl points are isolated degeneracies in reciprocal space that are monopoles of the Berry curvature. This topological charge makes them inherently robust to Hermitian perturbations of the system. However, non-Hermitian effects, usually inaccessible in condensed-matter systems, are an important feature of photonic systems, and when added to an otherwise Hermitian Weyl material have been predicted to spread the Berry charge of the Weyl point out onto a ring of exceptional points, creating a Weyl exceptional ring and fundamentally altering its properties. Here, we observe the implications of the Weyl exceptional ring using real-space measurements of an evanescently coupled bipartite optical waveguide array by probing its effects on the Fermi arc surface states and bulk diffraction properties of the two constituent sublattices in an experimental realization of a distributed Berry charge in a topological material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Helical waveguide array and corresponding band structure supporting a WER.
Fig. 2: Surface states connecting the projection of the Berry charges.
Fig. 3: Direct observation of a topological transition through the emergence of Fermi arc surface states.
Fig. 4: Distinguishing a WER from a Weyl point by observing the transverse radial propagation.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The code used in this study is available from the corresponding author on reasonable request.


  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Umucallar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  7. 7.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 1872 (2012).

    Article  Google Scholar 

  10. 10.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  19. 19.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  20. 20.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  Google Scholar 

  22. 22.

    Chen, W.-J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Lin, Q., Xiao, M., Yuan, L. & Fan, S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, 13731 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Xiao, M., Lin, Q. & Fan, S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Fang, C., Lu, L., Liu, J. & Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 12, 936–941 (2016).

    Article  Google Scholar 

  27. 27.

    Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611 (2017).

    Article  Google Scholar 

  28. 28.

    Goi, E., Yue, Z., Cumming, B. P. & Gu, M. Observation of type I photonic Weyl points in optical frequencies. Laser Photonics Rev. 12, 1700271 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Kato, T. Perturbation Theory for Linear Operators 2nd edn (Springer, 1995).

  31. 31.

    Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    MathSciNet  Article  Google Scholar 

  33. 33.

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  36. 36.

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Lawrence, M. et al. Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. Phys. Rev. Lett. 113, 093901 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Cerjan, A. & Fan, S. Achieving arbitrary control over pairs of polarization states using complex birefringent metamaterials. Phys. Rev. Lett. 118, 253902 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Lin, Z., Pick, A., Lončar, M. & Rodriguez, A. W. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 117, 107402 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Pick, A., Lin, Z., Jin, W. & Rodriguez, A. W. Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points. Phys. Rev. B 96, 224303 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    Google Scholar 

  51. 51.

    Kremer, M. et al. Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun. 10, 435 (2019).

    ADS  Article  Google Scholar 

  52. 52.

    Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    ADS  Article  Google Scholar 

  53. 53.

    Cerjan, A., Xiao, M., Yuan, L. & Fan, S. Effects of non-Hermitian perturbations on Weyl hamiltonians with arbitrary topological charges. Phys. Rev. B 97, 075128 (2018).

    ADS  Article  Google Scholar 

  54. 54.

    Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    Schomerus, H. & Wiersig, J. Non-Hermitian-transport effects in coupled-resonator optical waveguides. Phys. Rev. A 90, 053819 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Yariv, A. & Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

  57. 57.

    Leykam, D., Rechtsman, M. & Chong, Y. Anomalous topological phases and unpaired Dirac cones in photonic floquet topological insulators. Phys. Rev. Lett. 117, 013902 (2016).

    ADS  Article  Google Scholar 

Download references


The authors thank J. Noh for discussions about experimental techniques. M.C.R. and A.C. acknowledge support from the National Science Foundation under grants ECCS-1509546 and DMS-1620422 as well as the Packard Foundation via fellowship no. 2017-66821, and the Charles E. Kaufman foundation under grant no. KA2017-91788. K.P.C., S.H. and M.W. acknowledge National Science Foundation grants ECCS-1509199 and DMS-1620218. Y.D.C. is supported by Singapore MOE Academic Research Fund Tier 2 Grants MOE2015-T2-2-008 and MOE2016-T2-1-128, and Singapore MOE Academic Research Fund Tier 3 Grant MOE2016-T3-1-006.

Author information




A.C. conceived of the idea, carried out the experimental measurements, and performed the data analysis and numerical simulations. A.C. and M.C.R. designed the experiments. A.C., Y.D.C. and M.C.R. performed the theoretical analysis and wrote the manuscript. S.H. and M.W. developed the laser fabrication process and characterized the samples under the supervision of K.P.C. The project was supervised by M.C.R. All authors contributed to discussions and to finalizing the manuscript.

Corresponding author

Correspondence to Alexander Cerjan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary derivations and discussion, Supplementary Figs. 1–4 and Supplementary references 1–14.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerjan, A., Huang, S., Wang, M. et al. Experimental realization of a Weyl exceptional ring. Nat. Photonics 13, 623–628 (2019). https://doi.org/10.1038/s41566-019-0453-z

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing