Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational time-of-flight diffuse optical tomography


Imaging through a strongly diffusive medium remains an outstanding challenge, in particular in applications in biological and medical imaging. Here, we propose a method based on a single-photon time-of-flight camera that allows, in combination with computational processing of the spatial and full temporal photon distribution data, imaging of an object embedded inside a strongly diffusive medium over more than 80 transport mean free paths. The technique is contactless and requires 1 s acquisition times, thus allowing Hz frame rate imaging. The imaging depth corresponds to several centimetres of human tissue and allows us to perform deep-body imaging as a proof of principle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Main experimental results.
Fig. 3: Single-pixel temporal histograms of the photon arrivals transmitted through 2.5 cm (red) and 5 cm (blue) of material.
Fig. 4: Tracking of a hidden object positioned at different positions inside the diffusive medium.
Fig. 5: Numerical simulations of the reconstruction of a hidden object (0.5 mm thickness, 5 mm height, separated by 1 mm).
Fig. 6: Experimental results.

Data availability

All data used in this work are available from

Code availability

All codes used in this work are available from


  1. 1.

    Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon. 8, 784–790 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Woo, S. et al. Three-dimensional imaging of macroscopic objects hidden behind scattering media using time-gated aperture synthesis. Opt. Express 25, 32722–32731 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Satat, G., Tancik, M., Gupta, O., Heshmat, B. & Raskar, R. Object classification through scattering media with deep learning on time resolved measurement. Opt. Express 25, 17466–17479 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Wang, L. et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769 (1991).

    ADS  Article  Google Scholar 

  5. 5.

    Konecky, S. D. et al. Imaging complex structures with diffuse light. Opt. Express 16, 5048 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Durduran, T., Choe, R., Baker, W. B. & Yodh, A. G. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73, 076701 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Pifferi, A. et al. New frontiers in time-domain diffuse optics, a review. J. Biomed. Opt. 21, 091310 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Shi, L. & Alfano, R. R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).

  9. 9.

    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Delpy, D. T. et al. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433–1442 (1988).

    Article  Google Scholar 

  11. 11.

    Patterson, B., Chance, M. S. & Wilson, B. C. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989).

    ADS  Article  Google Scholar 

  12. 12.

    Jacques, S. L. Time resolved propagation of ultrashort laser pulses within turbid tissues. Appl. Opt. 28, 2223–2229 (1989).

    ADS  Article  Google Scholar 

  13. 13.

    Hebden, J. C. Evaluating the spatial resolution performance of a time-resolved optical imaging system. Med. Phys. 19, 1081–1087 (1992).

    Article  Google Scholar 

  14. 14.

    Hebden, J. C., Hall, D. J. & Delpy, D. T. The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation. Med. Phys. 22, 201–208 (1995).

    Article  Google Scholar 

  15. 15.

    Gibson, A. P. & Dehghani, A. Diffuse optical imaging. Philos. Trans. R. Soc. A 367, 3055–3072 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Berg, R., Jarlman, O. & Svanberg, S. Medical transillumination imaging using short-pulse diode lasers. Appl. Opt. 32, 574–579 (1993).

    ADS  Article  Google Scholar 

  17. 17.

    Grosenick, D., Wabnitz, H., Rinneberg, H. H., Moesta, K. T. & Schlag, P. M. Development of a time-domain optical mammograph and first in vivo applications. Appl. Opt. 38, 2927–2943 (1999).

    ADS  Article  Google Scholar 

  18. 18.

    Boas, D. A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18, 57–75 (2001).

    ADS  Article  Google Scholar 

  19. 19.

    Torricelli, A. et al. Time domain functional NIRS imaging for human brain mapping. Neuroimage 85, 28–50 (2014).

    Article  Google Scholar 

  20. 20.

    Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon. 8, 448–454 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Dalla Mora, A. et al. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomed. Opt. Express 6, 1749–1760 (2015).

    Article  Google Scholar 

  22. 22.

    Pavia, J. M., Wolf, M. & Charbon, E. Single-photon avalanche diode imagers applied to near-infrared imaging. IEEE J. Sel. Top. Quantum Electron. 20, 3800908 (2014).

    Google Scholar 

  23. 23.

    Gibson, A. P., Hebden, J. C. & Arridge, S. R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    Ripoll, J., Nieto-Vesperinas, M. & Carminati, R. Spatial resolution of diffuse photon density waves. J. Opt. Soc. Am. A 16, 1466 (1999).

    ADS  Article  Google Scholar 

  25. 25.

    Azizi, L., Zarychta, K., Ettori, D., Tinet, E. & Tualle, J.-M. Ultimate spatial resolution with diffuse optical tomography. Opt. Express 17, 12132 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Satat, G., Heshmat, B., Raviv, D. & Raskar, R. All photons imaging through volumetric scattering. Sci. Rep. 6, 33946 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Cai, W. et al. Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media. Proc. Natl Acad. Sci. USA 93, 13561–13564 (1996).

    ADS  Article  Google Scholar 

  28. 28.

    Gariepy, G. et al. Single-photon sensitive light-in-fight imaging. Nat. Commun. 6, 6021 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Yoo, K., Liu, F. & Alfano, R. When does the diffusion approximation fail to describe photon transport in random media? Phys. Rev. Lett. 64, 2647 (1990).

    ADS  Article  Google Scholar 

  30. 30.

    Wang, L. V. & Wu, H.-I. in Biomedical Optics: Principles and Imaging Ch. 8, 249–281 (Wiley, 2007).

  31. 31.

    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, 5007–5008 (2013).

    MathSciNet  Article  Google Scholar 

  32. 32.

    Gyongy, I. et al. A 256 × 256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications. IEEE Trans. Electron. Dev. 65, 547 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Combettes, P. L. & Pesquet, J.-C. in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (eds Bauschke, H. H. et al.) Ch. 10, 185–212 (Springer, 2011).

  34. 34.

    Komodakis, N. & Pesquet, J.-C. Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag. 32, 31–54 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Mallat, S. A. Wavelet Tour of Signal Processing 2nd edn (Academic Press, 2009).

  36. 36.

    Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Berisha, S. & Nagy, J. G. in Academic Press Library in Signal Processing Vol. 4 (eds Chellappa, R. & Theodoridis, S.) 193–247 (Elsevier, 2014).

Download references


D.F. acknowledges financial support the Engineering and Physical Sciences Research Council, UK (grants EP/M006514/1 and EP/M01326X/1). Y.W. acknowledges financial support from the Engineering and Physical Sciences Research Council, UK (grants EP/M008843/1 and EP/M011089/1).

Author information




A.L. and A.B. performed experiments and data analysis. A.R., F.T. and Y.W. developed the retrieval algorithms and performed data analysis. The project was devised and led by D.F. R.H. developed the SPAD camera. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Daniele Faccio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyons, A., Tonolini, F., Boccolini, A. et al. Computational time-of-flight diffuse optical tomography. Nat. Photonics 13, 575–579 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing