Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An optical tweezer phonon laser

Abstract

Phonon lasers are mechanical analogues of the ubiquitous optical laser and have been realized in a variety of contexts1,2,3,4,5,6,7,8,9,10,11,12. However, no such demonstration exists for mesoscopic levitated optomechanical systems, which are emerging as important platforms for conducting fundamental tests of quantum mechanics13,14,15 and gravity16, as well as for developing sensing modalities that couple mechanical motion to electron spin17,18,19,20 and charge21. Inspired by the pioneering work of Arthur Ashkin on optical tweezers22,23, we introduce a mesoscopic, frequency-tunable phonon laser based on the centre-of-mass oscillation of a silica nanosphere levitated in an optical tweezer under vacuum. Unlike previous levitated realizations, our scheme is general enough to be used on single electrons, liquid droplets or even small biological organisms24. Our device thus provides a pathway for a coherent source of phonons on the mesoscale that can be applied to both fundamental problems in quantum mechanics as well as tasks of precision metrology25,26,27.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical tweezer illustration and system model.
Fig. 2: Steady-state properties.
Fig. 3: Transient behaviour after the linear gain is switched on.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Wallentowitz, S., Vogel, W., Siemers, I. & Toschek, P. E. Vibrational amplification by stimulated emission of radiation. Phys. Rev. A 54, 943–946 (1996).

    Article  ADS  Google Scholar 

  2. Liu, H. C. et al. Coupled electron–phonon modes in optically pumped resonant intersubband lasers. Phys. Rev. Lett. 90, 077402 (2003).

    Article  ADS  Google Scholar 

  3. Bargatin, I. & Roukes, M. L. Nanomechanical analog of a laser: amplification of mechanical oscillations by stimulated Zeeman transitions. Phys. Rev. Lett. 91, 138302 (2003).

    Article  ADS  Google Scholar 

  4. Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article  Google Scholar 

  5. Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a Stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).

    Article  ADS  Google Scholar 

  6. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two–level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article  ADS  Google Scholar 

  7. Kabuss, J., Carmele, A., Brandes, T. & Knorr, A. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys. Rev. Lett. 109, 054301 (2012).

    Article  ADS  Google Scholar 

  8. Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    Article  ADS  Google Scholar 

  9. Lü, H., Özdemir, S. K., Kuang, L.-M., Nori, F. & Jing, H. Exceptional points in random-defect phonon lasers. Phys. Rev. Appl. 8, 044020 (2017).

    Article  ADS  Google Scholar 

  10. Wang, G. et al. Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum. Photon. Res. 5, 73–76 (2017).

    Article  Google Scholar 

  11. Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

    Article  ADS  Google Scholar 

  12. Ip, M. et al. Phonon lasing from optical frequency comb illumination of trapped ions. Phys. Rev. Lett. 121, 043201 (2018).

    Article  ADS  Google Scholar 

  13. Scala, M., Kim, M. S., Morley, G. W., Barker, P. F. & Bose, S. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111, 180403 (2013).

    Article  ADS  Google Scholar 

  14. Yin, Z.-q., Li, T., Zhang, X. & Duan, L. M. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).

    Article  ADS  Google Scholar 

  15. Bateman, J., Nimmrichter, S., Hornberger, K. & Ulbricht, H. Near-field interferometry of a free-falling nanoparticle from a point-like source. Nat. Commun. 5, 4788 (2014).

    Article  ADS  Google Scholar 

  16. Bose, S. et al. Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. Neukirch, L. P., Gieseler, J., Quidant, R., Novotny, L. & Vamivakas, A. N. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38, 2976–2979 (2013).

    Article  ADS  Google Scholar 

  18. Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Vamivakas, A. N. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).

    Article  ADS  Google Scholar 

  19. Hoang, T. M., Ahn, J., Bang, J. & Li, T. Electron spin control of optically levitated nanodiamonds in vacuum. Nat. Commun. 7, 12250 (2016).

    Article  ADS  Google Scholar 

  20. Pettit, R. M., Neukirch, L. P., Zhang, Y. & Vamivakas, A. N. Coherent control of a single nitrogen-vacancy center spin in optically levitated nanodiamond. J. Opt. Soc. Am. B 34, C31–C35 (2017).

    Article  Google Scholar 

  21. Millen, J., Fonseca, P. Z. G., Mavrogordatos, T., Monteiro, T. S. & Barker, P. F. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett. 114, 123602 (2015).

    Article  ADS  Google Scholar 

  22. Ashkin, A. & Dziedzic, J. M. Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333–335 (1976).

    Article  ADS  Google Scholar 

  23. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  24. Romero-Isart, O. et al. Large quantum superpositions and interference of massive nanometer-sized objects. Phys. Rev. Lett. 107, 020405 (2011).

    Article  ADS  Google Scholar 

  25. Geraci, A. A., Papp, S. B. & Kitching, J. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010).

    Article  ADS  Google Scholar 

  26. Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).

    Article  ADS  Google Scholar 

  27. Hempston, D. et al. Force sensing with an optically levitated charged nanoparticle. Appl. Phys. Lett. 111, 133111 (2017).

    Article  ADS  Google Scholar 

  28. Streltsov, A., Adesso, G. & Plenio, M. B. Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  29. Rodenburg, B., Neukirch, L. P., Vamivakas, A. N. & Bhattacharya, M. Quantum model of cooling and force sensing with an optically trapped nanoparticle. Optica 3, 318–323 (2016).

    Article  Google Scholar 

  30. Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article  ADS  Google Scholar 

  31. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014).

    Article  ADS  Google Scholar 

  32. Gieseler, J., Spasenović, M., Novotny, L. & Quidant, R. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112, 103603 (2014).

    Article  ADS  Google Scholar 

  33. Gieseler, J., Novotny, L., Moritz, C. & Dellago, C. Non-equilibrium steady state of a driven levitated particle with feedback cooling. New J. Phys. 17, 045011 (2015).

    Article  ADS  Google Scholar 

  34. Scully, M. O. & Zubairy, M. S. in Quantum Optics 327–361 (Cambridge Univ. Press, 1997).

  35. Gerry, C. C. & Knight, P. L. in Introductory Quantum Optics 115–134 (Cambridge Univ. Press, 2005).

  36. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  37. Dell’Anno, F., De Siena, S. & Illuminati, F. Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  38. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  39. Beresnev, S. A., Chernyak, V. G. & Fomyagin, G. A. Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization. J. Fluid Mech. 219, 405–421 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.M.P., D.R.L-M., J.T.S. and A.N.V. acknowledge generous support from the Institute of Optics and the Department of Physics and Astronomy at the University of Rochester and Office of Naval Research awards N00014-17-1-2285 and N00014-18-1-2370. W.G., P.K. and M.B. acknowledge support from Office of Naval Research awards N00014-14-1-0803 and N00014-17-1-2291 and useful discussions with J. Lawall and A.K. Jha.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and A.N.V. conceived the research. W.G. and P.K. performed the theoretical calculations, guided by M.B. R.M.P. performed the measurements. All authors discussed the data and wrote the manuscript.

Corresponding authors

Correspondence to Robert M. Pettit, Wenchao Ge, M. Bhattacharya or A. Nick Vamivakas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettit, R.M., Ge, W., Kumar, P. et al. An optical tweezer phonon laser. Nat. Photonics 13, 402–405 (2019). https://doi.org/10.1038/s41566-019-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0395-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing