Letter | Published:

A room-temperature organic polariton transistor


Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light–matter interactions. By managing the strength of light–matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures1. Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of ~10 dB μm−1, sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All data supporting this study are openly available from the University of Southampton repository at https://doi.org/10.5258/SOTON/D0792.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

  2. 2.

    Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities Vol. 21 (Oxford University Press, 2017).

  3. 3.

    Savvidis, P. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547 (2000).

  4. 4.

    Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

  5. 5.

    Nguyen, H. S. et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).

  6. 6.

    Marsault, F. et al. Realization of an all optical exciton-polariton router. Appl. Phys. Lett. 107, 201115 (2015).

  7. 7.

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

  8. 8.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

  9. 9.

    Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).

  10. 10.

    Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

  11. 11.

    Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

  12. 12.

    Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012).

  13. 13.

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

  14. 14.

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

  15. 15.

    Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

  16. 16.

    Dietrich, C. P. et al. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016).

  17. 17.

    Cookson, T. et al. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater. 5, 1700203 (2017).

  18. 18.

    Michetti, P. & La Rocca, G. Exciton–phonon scattering and photoexcitation dynamics in J-aggregate microcavities. Phys. Rev. B 79, 035325 (2009).

  19. 19.

    Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013).

  20. 20.

    Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

  21. 21.

    Somaschi, N. et al. Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Appl. Phys. Lett 99, 209 (2011).

  22. 22.

    Deng, H. et al. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006).

  23. 23.

    Maragkou, M., Grundy, A. J. D., Ostatnický, T. & Lagoudakis, P. G. Longitudinal optical phonon assisted polariton laser. Appl. Phys. Lett. 97, 111110 (2010).

  24. 24.

    Gadermaier, C. et al. Dynamics of higher photoexcited states in m-LPPP probed with sub-20 fs time resolution. Chem. Phys. Lett. 384, 251–255 (2004).

  25. 25.

    Schweitzer, B. et al. Spontaneous and stimulated emission from a ladder-type conjugated polymer. Phys. Rev. B 59, 4112 (1999).

  26. 26.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  27. 27.

    Klaers, J. et al. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

  28. 28.

    Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton-polariton lasing. New J. Phys. 14, 105003 (2012).

  29. 29.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

  30. 30.

    Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1, 4-phenylene) ladder polymer. Makromol. Chem. 193, 1127–1133 (1992).

Download references


The authors acknowledge the assistance of T. Yagafarov in demonstrating the AND gate operation. This work was partly supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) and the European Union's Horizon-2020 framework programme through the Marie-Sklodowska Curie ITN networks PHONSI (H2020-MSCA-ITN-642656), SYNCHRONICS (H2020-MSCA-ITN-643238), UK Engineering and Physical Sciences Research Council grant EP/M025330/1 on Hybrid Polaritonics, MIT-Skoltech NGP Program and the Russian Science Foundation (RSF) grant no. 18-72-00227.

Author information

R.F.M. and P.G.L. designed the research. A.V.Z. and A.V.B. performed the experiments and analysed the experimental data. D.U., F.S., T.S. and R.F.M. contributed to the design and fabrication of the organic microcavity. U.S. synthesized the organic material. The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Pavlos G. Lagoudakis.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Results, Supplementary Figures 1–12 and Supplementary References 1–21.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Organic microcavity and relevant energy levels.
Fig. 2: Spontaneous versus dynamic polariton condensation.
Fig. 3: Characteristics of the organic polariton transistor.
Fig. 4: Cascaded amplification and logic gates.