Abstract

Quantum communications promise to revolutionize the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently, they are heavily impaired by propagation channel losses, confining their transmission rate and range below a theoretical limit known as repeaterless secret key capacity. Overcoming this limit with today’s technology was believed to be impossible until the recent proposal of a scheme that uses phase-coherent optical signals and an auxiliary measuring station to distribute quantum information. Here, we experimentally demonstrate such a scheme for the first time and over significant channel losses, in excess of 90 dB. In the high loss regime, the resulting secure key rate exceeds the repeaterless secret key capacity, a result never achieved before. This represents a major step in promoting quantum communications as a dependable resource in today’s world.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

  2. 2.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

  3. 3.

    Townsend, P. D. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997).

  4. 4.

    Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

  5. 5.

    Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

  6. 6.

    Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

  7. 7.

    Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

  8. 8.

    Tamaki, K., Lo, H.-K., Fung, C.-H. F. & Qi, B. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 86, 059903 (2012).

  9. 9.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  10. 10.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  11. 11.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

  12. 12.

    Guha, S. et al. Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015).

  13. 13.

    Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

  14. 14.

    Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

  15. 15.

    Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992).

  16. 16.

    Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).

  17. 17.

    Azuma, K., Tamaki, K. & Munro, W. J. All-photonic intercity quantum key distribution. Nat. Commun. 6, 10171 (2015).

  18. 18.

    Luong, D., Jiang, L., Kim, J. & Lütkenhaus, N. Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122, 96 (2016).

  19. 19.

    Abruzzo, S., Kampermann, H. & Bruß, D. Measurement-device-independent quantum key distribution with quantum memories. Phys. Rev. A 89, 012301 (2014).

  20. 20.

    Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).

  21. 21.

    Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters: supplementary material. Nature 557, 400–403 (2018).

  22. 22.

    Tamaki, K., Lo, H.-K., Wang, W. & Lucamarini, M. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. Preprint at http://arxiv.org/abs/1805.05511v1 (2018).

  23. 23.

    Ma, X., Zeng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018).

  24. 24.

    Wang, X.-B., Yu, Z.-W. & Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018).

  25. 25.

    Cui, C. et al. Phase-matching quantum key distribution without phase post-selection. Preprint at http://arxiv.org/abs/1807.02334 (2018).

  26. 26.

    Curty, M., Azuma, K. & Lo, H.-K. Simple security proof of twin-field type quantum key distribution protocol. Preprint at http://arxiv.org/abs/1807.07667 (2018).

  27. 27.

    Lin, J. & Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018).

  28. 28.

    Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

  29. 29.

    Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

  30. 30.

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

  31. 31.

    Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

  32. 32.

    Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

  33. 33.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

  34. 34.

    Bordonalli, A. C., Walton, C. & Seeds, A. J. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J. Lightwave Technol. 17, 328–342 (1999).

  35. 35.

    Koashi, M. Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501 (2004).

  36. 36.

    Comandar, L. C. et al. Near perfect mode overlap between independently seeded, gain-switched lasers. Opt. Express 24, 17849–17859 (2016).

  37. 37.

    Cao, Z., Zhang, Z., Lo, H.-K. & Ma, X. Discrete-phase-randomized coherent state source and its application in quantum key distribution. New J. Phys. 17, 053014 (2015).

  38. 38.

    Jofre, M. et al. True random numbers from amplified quantum vacuum. Opt. Express 19, 20665–20672 (2011).

  39. 39.

    Yuan, Z. L. et al. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014).

  40. 40.

    Ye, J. et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network. J. Opt. Soc. Am. B 20, 1459–1467 (2003).

  41. 41.

    Tamura, Y. et al. The first 0.14-db/km loss optical fiber and its impact on submarine transmission. J. Lightwave Technol. 36, 44–49 (2018).

  42. 42.

    Zhou, Y.-H., Yu, Z.-W. & Wang, X.-B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016).

  43. 43.

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

  44. 44.

    Wang, X.-B., Hu, X.-L. & Yu, Z.-W. Effective eavesdropping to twin field quantum key distribution. Preprint at http://arxiv.org/abs/1805.02272 (2018).

  45. 45.

    Lo, H.-K. Getting something out of nothing. Quantum Inf. Comput. 5, 413–418 (2005).

  46. 46.

    Koashi, M. Efficient quantum key distribution with practical sources and detectors. Preprint at http://arxiv.org/abs/quant-ph/0609180 (2006).

Download references

Acknowledgements

The authors acknowledge useful discussions with M. Curty about the protocol in ref. 26. M.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) and Toshiba Research Europe Ltd. M.P. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 675662. G.L.R. acknowledges financial support via the EPSRC funded Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, Toshiba Research Europe Ltd and The Royal Commission for the Exhibition of 1851.

Author information

Author notes

  1. These authors contributed equally: M. Minder, M. Pittaluga.

Affiliations

  1. Toshiba Research Europe Ltd, Cambridge, UK

    • M. Minder
    • , M. Pittaluga
    • , G. L. Roberts
    • , M. Lucamarini
    • , J. F. Dynes
    • , Z. L. Yuan
    •  & A. J. Shields
  2. Department of Engineering, Cambridge University, Cambridge, UK

    • M. Minder
    •  & G. L. Roberts
  3. School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK

    • M. Pittaluga

Authors

  1. Search for M. Minder in:

  2. Search for M. Pittaluga in:

  3. Search for G. L. Roberts in:

  4. Search for M. Lucamarini in:

  5. Search for J. F. Dynes in:

  6. Search for Z. L. Yuan in:

  7. Search for A. J. Shields in:

Contributions

M.M. and M.P. developed the experimental set-up, performed the measurements and analysed the data. G.L.R. and J.F.D. supported the experimental work. Z.L.Y., M.L. and A.J.S. guided the work. M.L., M.M. and M.P. provided the simulations and wrote the manuscript, with contributions from all the authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to M. Lucamarini.

Supplementary information

  1. Supplementary Information

    Supplementary notes and figures.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41566-019-0377-7