Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects

Abstract

Light is a powerful tool to manipulate matter, but existing approaches often necessitate focused, high-intensity light that limits the manipulated object’s shape, material and size. Here, we report that self-stabilizing optical manipulation of macroscopic—millimetre-, centimetre- and even metre-scale—objects could be achieved by controlling the anisotropy of light scattering along the object’s surface. In a scalable design that features silicon resonators on silica substrate, we identify nanophotonic structures that can self-stabilize when rotated and/or translated relative to the optical axis. Nanoscale control of scattering across a large area creates restoring behaviour by engineering the scattered phase, without needing to focus incident light or excessively constrain the shape, size or material composition of the object. Our findings may lead to platforms for manipulating macroscopic objects, with applications ranging from contactless wafer-scale fabrication and assembly, to trajectory control for ultra-light spacecraft and even laser-propelled light sails for space exploration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering optical anisotropy for self-stabilizing manipulation.
Fig. 2: MEPS.
Fig. 3: Example dynamics of a propelled nanostructured object.
Fig. 4: Towards composite passively self-stabilizing structures.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  3. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  4. Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nat. Photon. 2, 675–678 (2008).

    Article  ADS  Google Scholar 

  5. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  6. Woerdemann, M., Alpmann, C., Esseling, M. & Denz, C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 7, 839–854 (2013).

    Article  ADS  Google Scholar 

  7. Taylor, M. A., Waleed, M., Stilgoe, A. B., Rubinsztein-Dunlop, H. & Bowen, W. P. Enhanced optical trapping via structured scattering. Nat. Photon. 9, 669–673 (2015).

    Article  ADS  Google Scholar 

  8. Stevenson, D. J., Gunn-Moore, F. & Dholakia, K. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt. 15, 41503 (2010).

    Article  Google Scholar 

  9. Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photon. 5, 318–321 (2011).

    Article  ADS  Google Scholar 

  10. MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    Article  ADS  Google Scholar 

  11. Padgett, M. & Di Leonardo, R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11, 1196–1205 (2011).

    Article  Google Scholar 

  12. Grier, D. G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid In. 2, 264–270 (1997).

    Article  Google Scholar 

  13. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2009).

    Article  ADS  Google Scholar 

  14. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 33015 (2010).

    Article  Google Scholar 

  15. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

    Article  Google Scholar 

  16. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  17. Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Nick Vamivakas, A. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).

    Article  ADS  Google Scholar 

  18. Ricci, F. et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 8, 15141 (2017).

    Article  ADS  Google Scholar 

  19. Bhattacharya, M., Vamivakas, A. N. & Barker, P. Levitated optomechanics: introduction. J. Opt. Soc. Am. B 34, LO1–LO2 (2017).

    Article  Google Scholar 

  20. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photon. 12, 284–290 (2018).

    Article  ADS  Google Scholar 

  21. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  22. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

  23. Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010).

    Article  ADS  Google Scholar 

  24. Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

    Article  Google Scholar 

  25. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  26. Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702–1706 (2012).

    Article  ADS  Google Scholar 

  27. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  28. Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).

    Article  ADS  Google Scholar 

  29. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  30. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  31. Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

    Article  ADS  Google Scholar 

  32. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    Article  Google Scholar 

  33. Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nat. Photon. 5, 48–51 (2010).

    Article  ADS  Google Scholar 

  34. Srinivasan, P. et al. Stability of laser-propelled wafer satellites. In Planetary Defense and Space Environment Applications (ed. Hughes, G. B.) 998105 (Conference Series Vol. 9981, SPIE, 2016).

  35. Manchester, Z. & Loeb, A. Stability of a light sail riding on a laser beam. Astrophys. J. Lett. 837, L20 (2017).

    Article  ADS  Google Scholar 

  36. Popova, H., Efendiev, M. & Gabitov, I. On the stability of a space vehicle riding on an intense laser beam. Preprint at https://arxiv.org/abs/1610.08043 (2016).

  37. Marx, G. Interstellar vehicle propelled by terrestrial laser beam. Nature 211, 22–23 (1966).

    Article  ADS  Google Scholar 

  38. Redding, J. L. Interstellar vehicle propelled by terrestrial laser beam. Nature 213, 588–589 (1967).

    Article  ADS  Google Scholar 

  39. Forward, R. L. Roundtrip interstellar travel using laser-pushed lightsails. J. Spacecraft Rockets 21, 187–195 (1984).

    Article  ADS  Google Scholar 

  40. Breakthrough Starshot Breakthrough Initiatives https://breakthroughinitiatives.org/Initiative/ (2018).

  41. Lubin, P. A roadmap to interstellar flight. J. Br. Interplanet. Soc. 69, 40–72 (2016).

    ADS  Google Scholar 

  42. Swartzlander, G. A. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B 34, C25–C30 (2017).

    Article  Google Scholar 

  43. Atwater, H. A. et al. Materials challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).

    Article  ADS  Google Scholar 

  44. Kulkarni, N., Lubin, P. & Zhang, Q. Relativistic spacecraft propelled by directed energy. Astron. J. 155, 155 (2018).

    Article  ADS  Google Scholar 

  45. Guccione, G. et al. Scattering-free optical levitation of a cavity mirror. Phys. Rev. Lett. 111, 183001 (2013).

    Article  ADS  Google Scholar 

  46. Ilic, O. et al. Topologically enabled optical nanomotors. Sci. Adv. 3, e1602738 (2017).

    Article  ADS  Google Scholar 

  47. Ilic, O., Went, C. M. & Atwater, H. A. Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett. 18, 5583–5589 (2018).

    Article  ADS  Google Scholar 

  48. Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

    Article  ADS  Google Scholar 

  49. Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4, 1420–1429 (2013).

    Article  Google Scholar 

  50. Shvedov, V., Davoyan, A. R., Hnatovsky, C., Engheta, N. & Krolikowski, W. A long-range polarization-controlled optical tractor beam. Nat. Photon. 8, 846–850 (2014).

    Article  ADS  Google Scholar 

  51. Ilic, O., Kaminer, I., Lahini, Y., Buljan, H. & Soljačić, M. Exploiting optical asymmetry for controlled guiding of particles with light. ACS Photon. 3, 197–202 (2016).

    Article  Google Scholar 

  52. Lu, J. et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett. 118, 043601 (2017).

    Article  ADS  Google Scholar 

  53. Tkachenko, G. et al. Optical trapping with planar silicon metalenses. Opt. Lett. 43, 3224–3227 (2018).

    Article  ADS  Google Scholar 

  54. Markovich, H., Shishkin, I. I., Hendler, N. & Ginzburg, P. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett. 18, 5024–5029 (2018).

    Article  ADS  Google Scholar 

  55. Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2012).

    Article  ADS  Google Scholar 

  56. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nat. Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  57. Achouri, K. & Caloz, C. Metasurface solar sail for flexible radiation pressure control. Preprint at https://arxiv.org/abs/1710.02837 (2017).

Download references

Acknowledgements

The authors thank colleagues from the Breakthrough Starshot Lightsail committee for discussions, and acknowledge financial support from the Air Force Office of Scientific Research under grant number FA9550-16-1-0019. The authors also acknowledge discussions with A. Davoyan, O. Miller, Z. Manchester, M. Kelzenberg, I. Kaminer, C. Went, W. Whitney, M. Sherrott, J. Wong, D. Jariwala, P. Jha and H. Akbari.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and made critical contributions to the work.

Corresponding author

Correspondence to Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information on the work and Supplementary Figures 1–8.

Supplementary Video 1

Time evolution of the dynamics of a structure that is initially both displaced (0. 5D) and tilted (10%).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilic, O., Atwater, H.A. Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects. Nat. Photonics 13, 289–295 (2019). https://doi.org/10.1038/s41566-019-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0373-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing