Frequency comb spectroscopy

Abstract

A laser frequency comb is a broad spectrum composed of equidistant narrow lines. Initially invented for frequency metrology, such combs enable new approaches to spectroscopy over broad spectral bandwidths, of particular relevance to molecules. The performance of existing spectrometers — such as crossed dispersers employing, for example, virtual imaging phase array étalons, or Michelson-based Fourier transform interferometers — can be dramatically enhanced with optical frequency combs. A new class of instruments, such as dual-comb spectrometers without moving parts, enables fast and accurate measurements over broad spectral ranges. The direct self-calibration of the frequency scale of the spectra within the accuracy of an atomic clock and the negligible contribution of the instrumental line-shape will enable determinations of all spectral parameters with high accuracy for stringent comparisons with theories in atomic and molecular physics. Chip-scale frequency comb spectrometers promise integrated devices for real-time sensing in analytical chemistry and biomedicine. This Review gives a summary of the developments in the emerging and rapidly advancing field of atomic and molecular broadband spectroscopy with frequency combs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of a frequency comb and sketch of a simple experiment of frequency comb spectroscopy.
Fig. 2: Spectral coverage with a selection of sources available for frequency comb spectroscopy.
Fig. 3: Spectrometric techniques for frequency comb spectroscopy.
Fig. 4: Physical principle of some of the described spectrometric techniques.
Fig. 5: Illustration of experimental results from the different approaches to frequency comb spectroscopy.
Fig. 6: Spectral coverage of dual-comb spectroscopy.

References

  1. 1.

    Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Google Scholar 

  2. 2.

    Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611–614 (2012).

    ADS  Google Scholar 

  3. 3.

    Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Google Scholar 

  4. 4.

    Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2013).

    ADS  Google Scholar 

  5. 5.

    Maddaloni, P., Bellini, M. & de Natale, P. Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook (CRC Press, Boca Raton, 2013).

    Google Scholar 

  6. 6.

    Ye, J. & Cundiff, S. T. (eds) Femtosecond Optical Frequency Comb: Principle,Operation and Applications (Springer Science + Business Media, Boston, 2005).

  7. 7.

    Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760–764 (1977).

    ADS  Google Scholar 

  8. 8.

    Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40, 847–850 (1978).

    ADS  Google Scholar 

  9. 9.

    Baklanov, Y. V. & Chebotayev, V. P. Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys. 12, 97–99 (1977).

    ADS  Google Scholar 

  10. 10.

    Eckstein, J. N. High Resolution Spectroscopy Using Multiple Coherent Interactions. PhD thesis, Stanford Univ. (1978).

  11. 11.

    Reichert, J., Holzwarth, R., Udem, T. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).

    ADS  Google Scholar 

  12. 12.

    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Google Scholar 

  13. 13.

    Picqué, N. & Guelachvili, G. Femtosecond frequency combs: new trends for Fourier transform spectroscopy. In Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment Paper FTuA2 (OSA, 2005).

  14. 14.

    Yasui, T. et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).

    ADS  Google Scholar 

  15. 15.

    Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Google Scholar 

  16. 16.

    Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Google Scholar 

  17. 17.

    Gohle, C. et al. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).

    ADS  Google Scholar 

  18. 18.

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    ADS  Google Scholar 

  19. 19.

    Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 3, 99–102 (2009).

    ADS  Google Scholar 

  20. 20.

    Marian, A. et al. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    ADS  Google Scholar 

  21. 21.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  22. 22.

    Stern, B. et al. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Google Scholar 

  23. 23.

    Wang, Z. et al. A III–V-on-Si ultra-dense comb laser. Light Sci. Appl. 6, e16260 (2017).

    Google Scholar 

  24. 24.

    Long, D. A. et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett. 39, 2688–2690 (2014).

    ADS  Google Scholar 

  25. 25.

    Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016).

    ADS  Google Scholar 

  26. 26.

    Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 3, 1040 (2012).

    Google Scholar 

  27. 27.

    Yardimci, N. T., Yang, S. H., Berry, C. W. & Jarrahi, M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).

    ADS  Google Scholar 

  28. 28.

    Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon. 8, 462–467 (2014).

    ADS  Google Scholar 

  29. 29.

    Rösch, M. et al. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics 7, 237–242 (2018).

    Google Scholar 

  30. 30.

    Tammaro, S. et al. High density terahertz frequency comb produced by coherent synchrotron radiation. Nat. Commun. 6, 7733 (2015).

    Google Scholar 

  31. 31.

    Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).

    ADS  Google Scholar 

  32. 32.

    Duval, S. et al. Femtosecond fiber lasers reach the mid-infrared. Optica 2, 623–626 (2015).

    Google Scholar 

  33. 33.

    Schunemann, P. G. et al. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).

    Google Scholar 

  34. 34.

    Vainio, M. & Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).

    Google Scholar 

  35. 35.

    Meek, S. et al. Fourier transform spectroscopy around 3 μm with a broad difference frequency comb. Appl. Phys. B 114, 573–578 (2014).

    ADS  Google Scholar 

  36. 36.

    Mayer, A. S. et al. Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide. Phys. Rev. Appl. 6, 054009 (2016).

    ADS  Google Scholar 

  37. 37.

    Galli, I. et al. High-coherence mid-infrared frequency comb. Opt. Express 21, 28877–28885 (2013).

    ADS  Google Scholar 

  38. 38.

    Maidment, L., Schunemann, P. G. & Reid, D. T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett. 41, 4261–4264 (2016).

    ADS  Google Scholar 

  39. 39.

    Seidel, M. et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 4, eaaq1526 (2018).

    Google Scholar 

  40. 40.

    Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

    Google Scholar 

  41. 41.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Google Scholar 

  42. 42.

    Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 39, 4518–4521 (2014).

    ADS  Google Scholar 

  43. 43.

    Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).

    Google Scholar 

  44. 44.

    Singh, N. et al. Midinfrared supercontinuum generation from 2 to 6 microns in a silicon nanowire. Optica 2, 797–802 (2015).

    Google Scholar 

  45. 45.

    Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. https://doi.org/10.1038/s41566-019-0358-x (2019).

  46. 46.

    Hugi, A. et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    ADS  Google Scholar 

  47. 47.

    Sterczewski, L. A. et al. Multiheterodyne spectroscopy using interband cascade lasers. Opt. Eng. 57, 011014 (2018).

    ADS  Google Scholar 

  48. 48.

    Zhao, S. et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 5, 4019 (2014).

    Google Scholar 

  49. 49.

    Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    ADS  Google Scholar 

  50. 50.

    Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    ADS  Google Scholar 

  51. 51.

    Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon. 12, 387–391 (2018).

    ADS  Google Scholar 

  52. 52.

    Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    ADS  Google Scholar 

  53. 53.

    Yost, D. C. et al. Spectroscopy of the hydrogen 1S–3S transition with chirped laser pulses. Phys. Rev. A 93, 042509 (2016).

    ADS  Google Scholar 

  54. 54.

    Solaro, C. et al. Direct frequency-comb-driven Raman transitions in the terahertz range. Phys. Rev. Lett. 120, 253601 (2018).

    ADS  Google Scholar 

  55. 55.

    Barmes, I., Witte, S. & Eikema, K. S. E. Spatial and spectral coherent control with frequency combs. Nat. Photon. 7, 38–42 (2012).

    ADS  Google Scholar 

  56. 56.

    Morgenweg, J., Barmes, I. & Eikema, K. S. E. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nat. Phys. 10, 30–33 (2013).

    Google Scholar 

  57. 57.

    Altmann, R. K. et al. Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory. Phys. Rev. Lett. 120, 043204 (2018).

    ADS  Google Scholar 

  58. 58.

    Nugent-Glandorf, L. et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285–3287 (2012).

    ADS  Google Scholar 

  59. 59.

    Yu, M. et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photon. 5, 2780–2785 (2018).

    Google Scholar 

  60. 60.

    Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    ADS  Google Scholar 

  61. 61.

    Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (John Wiley, Hoboken, 2007).

    Google Scholar 

  62. 62.

    Foltynowicz, A. et al. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).

    ADS  Google Scholar 

  63. 63.

    Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

    ADS  Google Scholar 

  64. 64.

    Changala, P. B. et al. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).

    Google Scholar 

  65. 65.

    Lee, S.-J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40, L878–L880 (2001).

    ADS  Google Scholar 

  66. 66.

    Jacquet, P. et al. Frequency comb Fourier transform spectroscopy with kHz optical resolution. In Advances in Imaging Paper FMB2 (OSA, 2009).

  67. 67.

    Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).

    ADS  Google Scholar 

  68. 68.

    Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl. Phys. Express 8, 082402 (2015).

    ADS  Google Scholar 

  69. 69.

    Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 9, 3035 (2018).

    ADS  Google Scholar 

  70. 70.

    Chen, Z., Hänsch, T. W. & Picqué, N. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1819082116 (2019).

  71. 71.

    Ideguchi, T. et al. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).

    Google Scholar 

  72. 72.

    Roy, J., Deschênes, J.-D., Potvin, S. & Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 20, 21932–21939 (2012).

    ADS  Google Scholar 

  73. 73.

    Burghoff, D., Yang, Y. & Hu, Q. Computational multiheterodyne spectroscopy. Sci. Adv. 2, e1601227 (2016).

    ADS  Google Scholar 

  74. 74.

    Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photon. 12, 202–208 (2018).

    ADS  Google Scholar 

  75. 75.

    Zhao, X. et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express 24, 21833–21845 (2016).

    ADS  Google Scholar 

  76. 76.

    Mehravar, S., Norwood, R. A., Peyghambarian, N. & Kieu, K. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett. 108, 231104 (2016).

    ADS  Google Scholar 

  77. 77.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Google Scholar 

  78. 78.

    Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017).

    Google Scholar 

  79. 79.

    Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).

    Google Scholar 

  80. 80.

    Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2010).

    ADS  Google Scholar 

  81. 81.

    Suh, M.-G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Google Scholar 

  82. 82.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Google Scholar 

  83. 83.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    ADS  Google Scholar 

  84. 84.

    Ideguchi, T. et al. Adaptive dual-comb spectroscopy in the green region. Opt. Lett. 37, 4847–4849 (2012).

    ADS  Google Scholar 

  85. 85.

    Hipke, A. et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A 90, 011805 (2014).

    ADS  Google Scholar 

  86. 86.

    Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    ADS  Google Scholar 

  87. 87.

    Yang, Y. et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica 3, 499–502 (2016).

    Google Scholar 

  88. 88.

    Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).

    ADS  Google Scholar 

  89. 89.

    Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).

    ADS  Google Scholar 

  90. 90.

    Jin, Y., Cristescu, S. M., Harren, F. J. M. & Mandon, J. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B 119, 65–74 (2015).

    ADS  Google Scholar 

  91. 91.

    Kara, O. et al. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators. Opt. Express 25, 32713–32721 (2017).

    ADS  Google Scholar 

  92. 92.

    Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).

    ADS  Google Scholar 

  93. 93.

    Finneran, I. A. et al. Decade-spanning high-precision terahertz frequency comb. Phys. Rev. Lett. 114, 163902 (2015).

    ADS  Google Scholar 

  94. 94.

    Yasui, T. et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep. 5, 10786 (2015).

    ADS  Google Scholar 

  95. 95.

    Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    ADS  Google Scholar 

  96. 96.

    Ideguchi, T. et al. Raman-induced Kerr-effect dual-comb spectroscopy. Opt. Lett. 37, 4498–4500 (2012).

    ADS  Google Scholar 

  97. 97.

    Asahara, A. & Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photon. 2, 041301 (2017).

    ADS  Google Scholar 

  98. 98.

    Meek, S. A. et al. Doppler-free Fourier transform spectroscopy. Opt. Lett. 43, 162–165 (2018).

    ADS  Google Scholar 

  99. 99.

    Fleisher, A. J. et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 24, 10424–10434 (2016).

    ADS  Google Scholar 

  100. 100.

    Hase, E. et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634–643 (2018).

    Google Scholar 

  101. 101.

    Coluccelli, N. et al. The optical frequency comb fibre spectrometer. Nat. Commun. 7, 12995 (2016).

    ADS  Google Scholar 

  102. 102.

    Lee, K. et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate. Sci. Rep. 5, 15726 (2015).

    ADS  Google Scholar 

  103. 103.

    Gambetta, A. et al. Scanning micro-resonator direct-comb absolute spectroscopy. Sci. Rep. 6, 35541 (2016).

    ADS  Google Scholar 

  104. 104.

    Urabe, K. & Sakai, O. Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser. Appl. Phys. Lett. 101, 051105 (2012).

    ADS  Google Scholar 

  105. 105.

    Ozawa, A. et al. Single ion fluorescence excited with a single mode of an UV frequency comb. Nat. Commun. 8, 44 (2017).

    ADS  Google Scholar 

  106. 106.

    Siciliani de Cumis, M. et al. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 91, 012505 (2015).

    ADS  Google Scholar 

  107. 107.

    Schroeder, P. J. et al. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature. Phys. Rev. A 96, 022514 (2017).

    ADS  Google Scholar 

  108. 108.

    Bourbeau-Hébert, N. et al. Real-time dynamic atomic spectroscopy using electro-optic frequency combs. Phys. Rev. Appl. 6, 044012 (2016).

    ADS  Google Scholar 

  109. 109.

    Reber, M. A. R., Chen, Y. & Allison, T. K. Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive. Optica 3, 311–317 (2016).

    Google Scholar 

  110. 110.

    Kim, J., Cho, B., Yoon, T. H. & Cho, M. Dual-frequency comb transient absorption: broad dynamic range measurement of femtosecond to nanosecond relaxation processes. J. Phys. Chem. Lett. 9, 1866–1871 (2018).

    Google Scholar 

  111. 111.

    Avino, S. et al. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities. Appl. Phys. Lett. 102, 201116 (2013).

    ADS  Google Scholar 

  112. 112.

    Cho, B., Yoon, T. H. & Cho, M. Dual-comb spectroscopy of molecular electronic transitions in condensed phases. Phys. Rev. A 97, 033831 (2018).

    ADS  Google Scholar 

  113. 113.

    Ganz, T. et al. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).

    ADS  Google Scholar 

  114. 114.

    Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).

    ADS  Google Scholar 

  115. 115.

    Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).

    ADS  Google Scholar 

  116. 116.

    Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96, 153001 (2006).

    ADS  Google Scholar 

  117. 117.

    Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  118. 118.

    Lomsadze, B., Smith, B. C. & Cundiff, S. T. Tri-comb spectroscopy. Nat. Photon. 12, 676–680 (2018).

    ADS  Google Scholar 

  119. 119.

    Bennett, K., Rouxel, J. R. & Mukamel, S. Linear and nonlinear frequency- and time-domain spectroscopy with multiple frequency combs. J. Chem. Phys. 147, 094304 (2017).

    ADS  Google Scholar 

  120. 120.

    Coburn, S. et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica 5, 320–327 (2018).

    Google Scholar 

  121. 121.

    Bergevin, J. et al. Dual-comb spectroscopy of laser-induced plasmas. Nat. Commun. 9, 1273 (2018).

    ADS  Google Scholar 

  122. 122.

    Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    ADS  Google Scholar 

  123. 123.

    Klocke, J. L. et al. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem. 90, 10494–10500 (2018).

    Google Scholar 

  124. 124.

    Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).

    ADS  Google Scholar 

  125. 125.

    Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. Evanescent-wave gas sensing with dual-comb spectroscopy. In Conference on Lasers and Electro-Optics Paper SF1M.7 (OSA, 2017).

Download references

Acknowledgements

Support by the Carl-Friedrich-von-Siemens Foundation is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathalie Picqué.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Picqué, N., Hänsch, T.W. Frequency comb spectroscopy. Nature Photon 13, 146–157 (2019). https://doi.org/10.1038/s41566-018-0347-5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing