ACS Photon. 5, 4371–4377 (2018)

Using light to manipulate small particles has proven an indispensable tool for ‘tweezing’, sorting and force measurements. To achieve effective optical traps with high ‘stiffness’, researchers often go to great lengths to tailor light fields, for example by using holographic elements. Now, Aliaksandra Ivinskaya and colleagues from Russia, the USA, the UK and Israel predict that small particles can be manipulated using a plane wave of light and a simple flat surface of an anisotropic media supporting hyperbolic modes. Their hyperbolic metamaterial is composed of metal and dielectric layers and is potentially less affected by losses and offers more broadband capability than purely plasmonic approaches. In their theoretical study a small dielectric sphere near a hyperbolic metamaterial is considered. The particle is sufficiently small to provide the required momentum to excite both surface plasmon and bulk hyperbolic waves from incident plane waves. Strong optical pulling forces were predicted over the 400–800 nm wavelength range thanks to the broadband high density of states of hyperbolic modes.

figure a

American Chemical Society