Searching for exoplanets using a microresonator astrocomb

Abstract

Orbiting planets induce a weak radial velocity (RV) shift in the host star that provides a powerful method of planet detection. Importantly, the RV technique provides information about the exoplanet mass, which is unavailable with the complementary technique of transit photometry. However, RV detection of an Earth-like planet in the ‘habitable zone’1 requires extreme spectroscopic precision that is only possible using a laser frequency comb (LFC)2. Conventional LFCs require complex filtering steps to be compatible with astronomical spectrographs, but a new chip-based microresonator device, the Kerr soliton microcomb3,4,5,6,7,8, is an ideal match for astronomical spectrograph resolution and can eliminate these filtering steps. Here, we demonstrate an atomic/molecular line-referenced soliton microcomb for calibration of astronomical spectrographs. These devices can ultimately provide LFC systems that would occupy only a few cubic centimetres9,10, thereby greatly expanding implementation of these technologies into remote and mobile environments beyond the research lab.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Concept of a microresonator astrocomb.
Fig. 2: Experimental schematic and atomic/molecular line-referenced soliton microcomb.
Fig. 3: Data from testing at Keck II.
Fig. 4: Arc lamp data for absolute wavelength calibration.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    Article  Google Scholar 

  3. 3.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  Google Scholar 

  5. 5.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

    Article  Google Scholar 

  9. 9.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Perryman, M. The Exoplanet Handbook (Cambridge University Press, Cambridge, UK, 2011).

  12. 12.

    Pepe, F., Ehrenreich, D. & Meyer, M. R. Instrumentation for the detection and characterization of exoplanets. Nature 513, 358–366 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611–614 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Article  Google Scholar 

  15. 15.

    Murphy, M. T. et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s–1. Nature 452, 610–612 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Braje, D. A., Kirchner, M. S., Osterman, S., Fortier, T. & Diddams, S. Astronomical spectrograph calibration with broad-spectrum frequency combs. Euro. Phys. J. D 48, 57–66 (2008).

    ADS  Article  Google Scholar 

  18. 18.

    Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    McCracken, R. A., Charsley, J. M. & Reid, D. T. A decade of astrocombs: Recent advances in frequency combs for astronomy. Opt. Express 25, 15058–15078 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Glenday, A. G. et al. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Optica 2, 250–254 (2015).

    Article  Google Scholar 

  21. 21.

    Murata, H., Morimoto, A., Kobayashi, T. & Yamamoto, S. Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators. IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

    ADS  Article  Google Scholar 

  22. 22.

    Huang, C., Jiang, Z., Leaird, D. & Weiner, A. High-rate femtosecond pulse generation via line-by-line processing of phase-modulated CW laser frequency comb. Electron. Lett. 42, 1114–1115 (2006).

    Article  Google Scholar 

  23. 23.

    Yi, X. et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. Nat. Commun. 7,10436 (2016).

  24. 24.

    Beha, K. et al. Electronic synthesis of light. Optica 4, 406–411 (2017).

    Article  Google Scholar 

  25. 25.

    Carlson, D. R. et al. Ultrafast electro-optic light with subcycle control. Science 361, 1358–1363 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Metcalf, A. J. et al. Infrared astronomical spectroscopy for radial velocity measurements with 10 cm/s precision. CLEO: Sci. Innovations JTh5A-1 (2018).

  27. 27.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Kippenberg, T., Spillane, S. & Vahala, K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  30. 30.

    Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Article  Google Scholar 

  31. 31.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Pavlov, N. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Feng, Y. K. et al. The California Planet Survey IV: A planet orbiting the giant star HD 145934 and updates to seven systems with long-period planets. Astrophys. J. 800, 22 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Mahadevan, S. et al. The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby–Eberly telescope. Ground-Based and Airborne Instrumentation for Astronomy IV 8446, 84461S (2012).

  40. 40.

    Kotani, T. et al. Infrared Doppler instrument (IRD) for the Subaru telescope to search for Earth-like planets around nearby M-dwarfs. Ground-Based and Airborne Instrumentation for Astronomy V 9147, 914714 (2014).

  41. 41.

    McLean, I. S. et al. Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope. Infrared Astronomical Instrumentation 3354, 566–579 (1998).

    ADS  Article  Google Scholar 

  42. 42.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Article  Google Scholar 

  43. 43.

    Blake, C. H., Charbonneau, D. & White, R. J. The NIRSPEC ultracool dwarf radial velocity survey. Astrophys. J. 723, 684 (2010).

    ADS  Article  Google Scholar 

  44. 44.

    Crepp, J. R. et al. iLocater: a diffraction-limited Doppler spectrometer for the Large Binocular Telescope. Ground-Based and Airborne Instrumentation for Astronomy VI 9908, 990819 (2016).

  45. 45.

    Lamb, E. S. et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum. Phys. Rev. Appl. 9, 024030 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

  47. 47.

    Lezius, M. et al. Space-borne frequency comb metrology. Optica 3, 1381–1387 (2016).

    Article  Google Scholar 

  48. 48.

    Plavchan, P. et al. EarthFinder: A precise radial velocity probe mission concept for the detection of Earth-mass planets orbiting Sun-like stars. Preprint at https://arXiv.org/abs/1803.03960 (2018).

  49. 49.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. https://doi.org/10.1038/s41566-018-0309-y (2018).

  50. 50.

    Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74 (2000).

    ADS  Article  Google Scholar 

  51. 51.

    Spillane, S., Kippenberg, T., Painter, O. & Vahala, K. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  52. 52.

    Yi, X., Yang, Q.-F., Youl, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Cole, D., Beha, K., Diddams, S. & Papp, S. Octave-spanning supercontinuum generation via microwave frequency multiplication. J. Phys. Conf. Ser. 723, 012035 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. Schlieder, A. Howard, F. Hadaegh and the support of the entire Keck summit team. We thank D. Carlson and H. Timmers for preparing the HNLF. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This paper made use of data available in the NASA Exoplanet Archive and the Keck Observatory Archive. S.D. and S.P. acknowledge support from NIST. K.V., M.-G.S., X.Y. and Y.-H.L. thank the Kavli Nanoscience Institute and NASA for support under KJV.JPLNASA-1-JPL.1459106. This research was carried out at JPL and the California Institute of Technology under a contract with NASA and funded through the JPL Research and Technology Development Program.

Author information

Affiliations

Authors

Contributions

M.-G.S., S.L., G.V., M.P.F., D.M., S.B.P., S.A.D., C.B. and K.V. conceived the experiments. All co-authors designed and performed experiments. M.-G.S. and X.Y. built the soliton microcomb set-up and EO comb set-up with S.L., I.S.G., S.A.D., S.B.P. and Y.-H.L. providing assistance. G.D. managed operations and the experimental interface of the Keck II telescope. E.C.M., J.W. and C.B. analysed NIRSPEC data. C.B. and K.V. supervised the experiment. M.-G.S., C.B. and K.V. prepared the manuscript with input from all co-authors.

Corresponding authors

Correspondence to C. Beichman or Kerry Vahala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suh, M., Yi, X., Lai, Y. et al. Searching for exoplanets using a microresonator astrocomb. Nature Photon 13, 25–30 (2019). https://doi.org/10.1038/s41566-018-0312-3

Download citation

Further reading