Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronic wavefunctions probed by all-optical attosecond interferometry

Abstract

In photoelectron spectroscopy, the ionized electron wavefunction carries information about the structure of the bound orbital and the ionic potential as well as about the photoionization dynamics. However, retrieving the quantum phase information has been a long-standing challenge. Here, we transfer the electron phase retrieval problem into an optical one by measuring the time-reversed process of photoionization—photo-recombination—in attosecond pulse generation. We demonstrate all-optical interferometry of two independent phase-locked attosecond light sources. This measurement enables us to directly determine the phase shift associated with electron scattering in simple quantum systems such as helium and neon, over a large energy range. Moreover, the strong-field nature of attosecond pulse generation resolves the dipole phase around the Cooper minimum in argon through a single scattering angle. This method may enable the probing of complex orbital phases in molecular systems as well as electron correlations through resonances subject to strong laser fields.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Phase measurement scheme using XUV–XUV interferometry.
Fig. 2: XUV–XUV interferometry.
Fig. 3: Differential phase measurements of neon and helium.
Fig. 4: Differential phase measurements of argon and neon.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Becker, U. Complete photoionisation experiments. J. Electron. Spectrosc. Relat. Phenom. 96, 105–115 (1998).

    Article  Google Scholar 

  2. 2.

    Motoki, S. et al. Complete photoionization experiment in the region of the 2σg → σu shape resonance of the N2 molecule. J. Phys. B 35, 3801–3819 (2002).

    ADS  Article  Google Scholar 

  3. 3.

    Marceau, C. et al. Molecular frame reconstruction using time-domain photoionization interferometry. Phys. Rev. Lett. 119, 083401 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Villeneuve, D. M., Hockett, P., Vrakking, M. J. J. & Niikura, H. Coherent imaging of an attosecond electron wave packet. Science 356, 1150–1153 (2017).

    Article  Google Scholar 

  5. 5.

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Månsson, E. P. et al. Double ionization probed on the attosecond timescale. Nat. Phys. 10, 207–211 (2014).

    Article  Google Scholar 

  10. 10.

    Guénot, D. et al. Measurements of relative photoemission time delays in noble gas atoms. J. Phys. B 47, 245602 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Sabbar, M. et al. Resonance effects in photoemission time delays. Phys. Rev. Lett. 115, 133001 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Dahlström, J. M., L'Huillier, A. & Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B 45, 183001 (2012).

    Article  Google Scholar 

  16. 16.

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  17. 17.

    Young, L. et al. X-ray microprobe of orbital alignment in strong-field ionized atoms. Phys. Rev. Lett. 97, 083601 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    Hockett, P. Angle-resolved RABBITT: theory and numerics. J. Phys. B 50, 154002 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Shafir, D., Mairesse, Y., Villeneuve, D. M., Corkum, P. B. & Dudovich, N. Atomic wavefunctions probed through strong-field light–matter interaction. Nat. Phys. 5, 412–416 (2009).

    Article  Google Scholar 

  20. 20.

    Zerne, R. et al. Phase-locked high-order harmonic sources. Phys. Rev. Lett. 79, 1006–1009 (1997).

    ADS  Article  Google Scholar 

  21. 21.

    Kovačev, M. et al. Extreme ultraviolet Fourier-transform spectroscopy with high order harmonics. Phys. Rev. Lett. 95, 223903 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    Corsi, C., Pirri, A., Sali, E., Tortora, A. & Bellini, M. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation. Phys. Rev. Lett. 97, 023901 (2006).

    ADS  Article  Google Scholar 

  23. 23.

    Bertrand, J. B., Wörner, H. J., Salières, P., Villeneuve, D. M. & Corkum, P. B. Linked attosecond phase interferometry for molecular frame measurements. Nat. Phys. 9, 174–178 (2013).

    Article  Google Scholar 

  24. 24.

    Kanai, T., Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Destructive interference during high harmonic generation in mixed gases. Phys. Rev. Lett. 98, 153904 (2007).

    ADS  Article  Google Scholar 

  25. 25.

    Jansen, G. S. M., Rudolf, D., Freisem, L., Eikema, K. S. E. & Witte, S. Spatially resolved Fourier transform spectroscopy in the extreme ultraviolet. Optica 3, 1122–1125 (2016).

    Article  Google Scholar 

  26. 26.

    Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Article  Google Scholar 

  28. 28.

    Varjú, K. et al. Frequency chirp of harmonic and attosecond pulses. J. Mod. Opt. 52, 379–394 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Le, A.-T., Morishita, T. & Lin, C. D. Extraction of the species-dependent dipole amplitude and phase from high-order harmonic spectra in rare-gas atoms. Phys. Rev. A 78, 023814 (2008).

    ADS  Article  Google Scholar 

  31. 31.

    Jin, C., Le, A.-T. & Lin, C. D. Medium propagation effects in high-order harmonic generation of Ar and N2. Phys. Rev. A 83, 023411 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic confirmation that the factorized formula for harmonic generation involves the exact photorecombination cross section. Phys. Rev. A 83, 043416 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Ammosov, M., Delone, N. & Krainov, V. Tunnel ionization of complex atoms and atomic ions in an electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  34. 34.

    Bransden, B. H. & Joachain, C. J. Physics of Atoms and Molecules 2nd edn (Prentice-Hall, Harlow, UK, 2003).

  35. 35.

    Fano, U. Propensity rules: an analytical approach. Phys. Rev. A. 32, 617–618 (1985).

    ADS  Article  Google Scholar 

  36. 36.

    Cooper, J. W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 128, 681–693 (1962).

    ADS  Article  Google Scholar 

  37. 37.

    Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    ADS  Article  Google Scholar 

  38. 38.

    Higuet, J. et al. High-order harmonic spectroscopy of the Cooper minimum in argon: experimental and theoretical study. Phys. Rev. A 83, 053401 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Kheifets, A. S. Time delay in valence-shell photoionization of noble-gas atoms. Phys. Rev. A 87, 063404 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Schoun, S. B. et al. Attosecond pulse shaping around a Cooper minimum. Phys. Rev. Lett. 112, 153001 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Beutler, H. Über Absorptionsserien von Argon, Krypton und Xenon, zu Termen zwischen den beiden Ionisierungsgrenzen 2 P 3 2/0 und 2 P 1 2/0. Z. Phys. 93, 177–196 (1935).

    ADS  Article  Google Scholar 

  42. 42.

    Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Cirelli, C. et al. Anisotropic photoemission time delays close to a Fano resonance. Nat. Commun. 9, 955 (2018).

    ADS  Article  Google Scholar 

  44. 44.

    Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    ADS  Article  Google Scholar 

  45. 45.

    Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).

    ADS  Article  Google Scholar 

  46. 46.

    Langer, B. et al. Angular distribution of the Ne 2s → np autoionization resonances: experimental and theoretical study. J. Phys. B 30, 593–607 (1997).

    ADS  Article  Google Scholar 

  47. 47.

    Berrah, N. et al. Angular-distribution parameters and R-matrix calculations of Ar 3s−1→np resonances. J. Phys. B 29, 5351–5365 (1996).

    ADS  Article  Google Scholar 

  48. 48.

    X-ray Form Factor, Attenuation, and Scattering Tables (NIST, 2016); https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables

  49. 49.

    Pabst, S. & Santra, R. Spin-orbit effects in atomic high-harmonic generation. J. Phys. B 47, 124026 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Torlina, L. & Smirnova, O. Coulomb time delays in high harmonic generation. New J. Phys. 19, 023012 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  Google Scholar 

  52. 52.

    Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    ADS  Article  Google Scholar 

  53. 53.

    Slater, J. C. & Johnson, K. H. Self-consistent-field xα cluster method for polyatomic molecules and solids. Phys. Rev. B 5, 844–853 (1972).

    ADS  Article  Google Scholar 

  54. 54.

    Schwarz, K. Optimization of the statistical exchange parameter σ for the free atoms H through Nb. Phys. Rev. B 5, 2466–2468 (1972).

    ADS  Article  Google Scholar 

  55. 55.

    Latter, R. Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Phys. Rev. 99, 510–519 (1955).

    ADS  Article  Google Scholar 

  56. 56.

    Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (US Government Printing Office, Washington, D.C., 1964).

Download references

Acknowledgements

We thank S. Patchkovskii, C. Ott and A. Harth for discussions. N.D. is the incumbent of the Robin Chemers Neustein Professorial Chair. N.D. acknowledges the Minerva Foundation, the Israeli Science Foundation, the Crown Center of Photonics and the European Research Council for financial support. M.K. acknowledges financial support by the Minerva Foundation and the Koshland Foundation. B.P., A.C., B.F. and Y.M. acknowledge financial support from the French National Research Agency through grant ANR-14-CE32-0014 MISFITS.

Author information

Affiliations

Authors

Contributions

N.D. and M.K. supervised the study. D.A. and M.K. designed and built the experimental setup. D.A., M.K. and O.K. carried out the measurements and analysed the data. B.P., A.C. and B.F. conceived and performed the theoretical calculations. D.A., M.K., N.D., B.P., B.F. and Y.M. interpreted the experimental and theoretical results. B.D.B. supported the operation of the laser system. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Nirit Dudovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azoury, D., Kneller, O., Rozen, S. et al. Electronic wavefunctions probed by all-optical attosecond interferometry. Nature Photon 13, 54–59 (2019). https://doi.org/10.1038/s41566-018-0303-4

Download citation

Further reading

Search

Quick links