Giant broadband refraction in the visible in a ferroelectric perovskite

Abstract

In principle, materials with a broadband giant index of refraction (n > 10) overcome chromatic aberration and shrink the diffraction limit down to the nanoscale, allowing new opportunities for nanoscopic imaging1. They also open alternative avenues for the management of light to improve the performance of photovoltaic cells2. Recent advances have demonstrated the feasibility of a giant refractive index in metamaterials at microwave and terahertz frequencies3,4, but the highest reported broadband index of refraction in the visible is n < 5 (ref. 5). Here, we report a ferroelectric perovskite with an index of refraction of n > 26 across the entire visible spectrum and demonstrate its behaviour using white-light and laser refraction and diffraction experiments. The sample, a solid-solution K0.997Ta0.64Nb0.36:Li0.003 (KTN:Li) perovskite6,7,8,9,10,11,12, has a naturally occurring room-temperature phase that propagates visible light along its normal axis without significant diffraction or chromatic dispersion, irrespective of beam size, intensity and angle of incidence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Giant refraction.
Fig. 2: White-light experiments.
Fig. 3: Monochromatic experiments and the physical origin of GR.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Brongersma, M. L., Cui, Y. & Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Chang, T. et al. Broadband giant-refractive-index material based on mesoscopic space-filling curves. Nat. Commun. 7, 12661 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–374 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1998).

    Google Scholar 

  6. 6.

    Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    ADS  Article  Google Scholar 

  7. 7.

    Bokov, A. A. & Ye, Z. G. Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectrics 2, 1241010 (2012).

    Article  Google Scholar 

  8. 8.

    Shvartsman, V. V. & Lupascu, D. C. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).

    Article  Google Scholar 

  9. 9.

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Rahaman, M. M., Imai, T., Sakamoto, T., Tsukada, S. & Kojima, S. Fano resonance of Li-doped KTa1–xNbxO3 single crystals studied by Raman scattering. Sci. Rep. 6, 23898 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Kutnjak, Z. & Pirc, R. Specific heat anomaly in relaxor ferroelectrics and dipolar glasses. J. Appl. Phys. 121, 105107 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Tan, P. et al. Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa1−xNbxO3 crystal. Appl. Phys. Lett. 111, 012903 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Pierangeli, D. et al. Super-crystals in composite ferroelectrics. Nat. Commun. 7, 10674 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Ferraro, M. et al. Observation of polarization-maintaining light propagation in depoled compositionally disordered ferroelectrics. Opt. Lett. 42, 3856–3859 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Zhang, X. et al. Abnormal optical anisotropy in correlated disorder KTa1–xNbxO3:Cu with refractive index gradient. Sci. Rep. 8, 2892 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Niu, S. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392–396 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    DelRe, E., Spinozzi, E., Agranat, A. J. & Conti, C. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat. Photon. 5, 39–42 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    DelRe, E. et al. Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths. Nat. Photon. 9, 228–232 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Di Mei, F. et al. Intrinsic negative mass from nonlinearity. Phys. Rev. Lett. 116, 153902 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Chang, Y. C., Wang, C., Yin, S., Hoffman, R. C. & Mott, A. G. Giant electro-optic effect in nanodisordered KTN crystals. Opt. Lett. 38, 4574–4577 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Pierangeli, D. et al. Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics. Opt. Mater. Express 4, 1487–1493 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Gunter, P. & Hiugnard, J. P. (eds) Photorefractive Materials and Their Applications I (Springer, New York, 2006).

    Google Scholar 

  23. 23.

    DelRe, E., Di Porto, P. & Crosignani, B. Photorefractive solitons and their underlying nonlocal physics. Progr. Opt. 53, 153–200 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Mansfield, S. M. & Kino, G. S. Solid immersion microscope. Appl. Phys. Lett. 57, 2615–2616 (1990).

    ADS  Article  Google Scholar 

  26. 26.

    Pendry, J. B., Schrurig, D. E. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  28. 28.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–401 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article  Google Scholar 

  31. 31.

    Yariv, A. Quantum Electronics (John Wiley & Sons, New York, 1967).

  32. 32.

    Parravicini, J., DelRe, E., Agranat, A. J. & Parravicini, G. B. Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskites. Nanoscale 9, 9572 (2017).

    Article  Google Scholar 

  33. 33.

    Bons, P. C., de Haas, R., de Jong, D., Groot, A. & van der Straten, P. Quantum enhancement of the index of refraction in a Bose–Einstein condensate. Phys. Rev. Lett. 116, 173602 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from grants Sapienza 2016/2017 and Lazio Innova 2017. A.J.A. acknowledges the support of the Peter Brojde Center for Innovative Engineering.

Author information

Affiliations

Authors

Contributions

F.D.M. and E.D. conceived and designed the experiments. F.D.M., L.F., M.F., D.P., P.D.P. and E.D. carried out the investigation and the experiments. A.J.A. designed and grew the crystal samples. All authors discussed the results and wrote the paper.

Corresponding author

Correspondence to F. Di Mei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains additional photographs and analysis.

Supplementary Video 1

A sequence of videos of the giant refraction effect.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Mei, F., Falsi, L., Flammini, M. et al. Giant broadband refraction in the visible in a ferroelectric perovskite. Nature Photon 12, 734–738 (2018). https://doi.org/10.1038/s41566-018-0276-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing