Response shaping with a silicon ring resonator via double injection

Abstract

Modern systems often provide complex functionality that can be realized by tailoring together elements of simpler functionality. Multiplicity of simple optical functions (response shapes), when densely fabricated on a chip, can promote the concept of a field-programmable optical array. Shaping of the frequency response, or otherwise an electrical-to-optical response, is studied and demonstrated by means of a racetrack-shaped ring resonator designed and fabricated in the so-called double injection configuration. This configuration possesses a unique property that allows two free spectral range states (regular, 2 × regular) to exist for a single ring length. Shaping is realized by properly selecting different coupling coefficients that provide a variety of interesting responses. Here, we demonstrate various shapes including: sinusoidal, triangular (linear), square (bandpass), dips and peaks (two states), spikes (tangent-like), interleaver and a so-called 20dB-min parameters-insensitive-response modulator. The transmission responses were experimentally realized, fabricated in a silicon-on-insulator platform and characterized at wavelengths around 1,550 nm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of a passive optical device based on the DI configuration.
Fig. 2: Response shapes obtained by a DI resonator.
Fig. 3: Parameters-insensitive device (PIR20) of Fig. 2j compared to a MZI.
Fig. 4: SEM images of optical circuits comprising the DI resonator and waveguide cross-section of a coupler’s parallel section.
Fig. 5: Spectral responses (Et1) of optical circuits comprising the DI resonator.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Subbaraman, H. et al. Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23, 1744–1746 (2015).

    Article  Google Scholar 

  2. 2.

    Grillanda, S. et al. Non-invasive monitoring of mode-division multiplexed channels on a silicon photonic chip. J. Light. Technol. 33, 1197–1201 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Ackert, J. J. et al. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photon. 9, 393–396 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Article  Google Scholar 

  7. 7.

    Cox, C. H., Ackerman, E. & Betts , G. E., & Prince, J. L. Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54, 906–921 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Ehrlichman, Y., Amrani, O. & Ruschin, S. Electro-optic threshold comparator based on multimode interference. Opt. Express 21, 72–73 (2013).

    Google Scholar 

  9. 9.

    Chen, P., Chen, S., Guan, X., Shi, Y. & Dai, D. High-order microring resonators with bent couplers for a box-like filter response. Opt. Lett. 39, 6304–6307 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Wang, Q. & He, S. Optimal design of a flat-top interleaver based on cascaded M–Z interferometers by using a genetic algorithm. Opt. Commun. 224, 229–236 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    Song, J. et al. Passive ring-assisted Mach–Zehnder interleaver on silicon-on-insulator. Opt. Express 16, 8359–8365 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Bridges, W. & Schaffner, J. Distortion in linearized electrooptic modulators. IEEE Trans. Microw. Theory Tech. 33, 2184–2197 (1995).

    ADS  Article  Google Scholar 

  13. 13.

    Dingel, B., Madamopoulos, N., Prescod, A. & Madabhushi, R. Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130 dB). Opt. Commun. 284, 5578–5587 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Gutierrez, A. & Galan, J. High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications. In 9th International Conference on Group IV Photonics (GFP) 57–59 (IEEE, 2012).

  15. 15.

    Cardenas, J., Morton, P. & Khurgin, J. Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer. Opt. Express 21, 13115–13122 (2013).

    Google Scholar 

  16. 16.

    Chi, H. & Yao, J. A photonic analog-to-digital conversion scheme using Mach–Zehnder modulators with identical half-wave voltages. Opt. Express 16, 567–572 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Tait, A. N., Shastri, B. J., Fok, M. P., Nahmias, M. A. & Prucnal, P. R. The DREAM: An integrated photonic thresholder. J. Light. Technol. 31, 1263–1272 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Zhang, Z., Huang, B., Zhang, Z., Cheng, C. & Chen, H. Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator. Opt. Eng. 52, 127102 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Cherchi, M. et al. Flat-top interleavers: a novel approach based on MMI splitters. Proc. SPIE 9752, 975210 (2016).

  20. 20.

    Zhuang, L. et al. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit. Opt. Express 24, 5715–5727 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Akahane, Y., Asano, T., Song, B. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Zhang, L. et al. Embedded ring resonators for microphotonic applications. Opt. Lett. 33, 1978–1980 (2008).

    ADS  Article  Google Scholar 

  23. 23.

    Qiu, C. et al. Asymmetric Fano resonance in eye-like microring system. Appl. Phys. Lett. 101, 021110 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Souza, M. C. M. M. et al. Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing. Opt. Express 22, 20179–20186 (2014).

    Article  Google Scholar 

  25. 25.

    Bogaerts, W. et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Cohen, R. A., Amrani, O. & Ruschin, S. Linearized electro-optic racetrack modulator based on double injection method in silicon. Opt. Express 23, 2252–2261 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Darcie, T. E., Zhang, J., Driessen, P. F., Member, S. & Eun, J. Class-B microwave-photonic link using optical frequency modulation and linear frequency discriminators. J. Light. Technol. 25, 157–164 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    Iezekiel, S. Class AB. radio-over-fiber link based on highly linear ring resonator modulators. Proc. SPIE 9387, 938709 (2015).

  29. 29.

    Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000).

    Article  Google Scholar 

  32. 32.

    Prinzen, A., Waldow, M. & Kurz, H. Fabrication tolerances of SOI based directional couplers and ring resonators.Opt. Express 21, 17212–17220 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Zhang, Y. et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 21, 1310–1316 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Xiao, Z. et al. Ultra-compact low loss polarization insensitive silicon waveguide splitter. Opt. Express 21, 16331–16336 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Ding, J., Ji, R., Zhang, L. & Yang, L. Electro-optical response analysis of a 40 Gb/s silicon Mach–Zehnder optical modulator. J. Light. Technol. 31, 2434–2440 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Yue, P., Yi, X., Li, Q.-N., Wang, T. & Liu, Z.-J. MMI-based ultra linear electro-optic modulator with high output RF gain. Optik 124, 2623–2626 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Khilo, A., Sorace, C. M. & Kärtner, F. X. Broadband linearized silicon modulator. Opt. Express 19, 4485–4500 (2011).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

R.A.C. conceived the idea and simulated the optical and electro-optical circuits, fabricated the devices as well as designed and performed the experiments and also analysed the results and wrote the manuscript. O.A. and S.R. conceived the idea, analysed the results, contributed to manuscript preparation and supervised the study.

Corresponding authors

Correspondence to Roei Aviram Cohen or Ofer Amrani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, R.A., Amrani, O. & Ruschin, S. Response shaping with a silicon ring resonator via double injection. Nature Photon 12, 706–712 (2018). https://doi.org/10.1038/s41566-018-0275-4

Download citation

Further reading