Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits


Quantum entanglement is important for emerging quantum technologies such as quantum computation and secure quantum networks. To boost these technologies, a race is currently ongoing to increase the number of particles in multiparticle entangled states, such as Greenberger–Horne–Zeilinger (GHZ) states. An alternative route is to increase the number of entangled quantum levels. Here, we overcome present experimental and technological challenges to create a three-particle GHZ state entangled in three levels for every particle. The resulting qutrit-entangled states are able to carry more information than entangled states of qubits. Our method, inspired by the computer algorithm Melvin, relies on a new multi-port that coherently manipulates several photons simultaneously in higher dimensions. The realization required us to develop a new high-brightness four-photon source entangled in orbital angular momentum. Our results allow qualitatively new refutations of local-realistic world views. We also expect that they will open up pathways for a further boost to quantum technologies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept of three-dimensional GHZ entanglement creation.
Fig. 2: Experimental details and physical generation principle.
Fig. 3: Multimode HOM interference in the multiport.
Fig. 4: Experimental measurements and simultaneous GHZ violations in two-dimensional state subspaces.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conf. Foundations of Computer Science 56–65 (IEEE, 1996).

  2. 2.

    Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, The Netherlands, 1989).

  4. 4.

    Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090405 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  Article  Google Scholar 

  7. 7.

    Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Song, C. et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Ryu, J., Lee, C., Żukowski, M. & Lee, J. Greenberger–Horne–Zeilinger theorem for N qudits. Phys. Rev. A 88, 042101 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Ryu, J. et al. Multisetting Greenberger–Horne–Zeilinger theorem. Phys. Rev. A 89, 024103 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Lawrence, J. Rotational covariance and Greenberger–Horne–Zeilinger theorems for three or more particles of any dimension. Phys. Rev. A 89, 012105 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Tang, W., Yu, S. & Oh, C. Multisetting Greenberger–Horne–Zeilinger paradoxes. Phys. Rev. A 95, 012131 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Hiesmayr, B., De Dood, M. & Löffler, W. Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Zhang, Y. et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8, 632 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Krenn, M., Gu, X. & Zeilinger, A. Quantum experiments and graphs: multiparty states as coherent superpositions of perfect matchings. Phys. Rev. Lett. 119, 240403 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Gu, X., Erhard, M., Zeilinger, A. & Krenn, M. Quantum experiments and graphs II: computation and state generation with probabilistic sources and linear optics. Preprint at (2018).

  24. 24.

    Schlederer, F., Krenn, M., Fickler, R., Malik, M. & Zeilinger, A. Cyclic transformation of orbital angular momentum modes. New J. Phys. 18, 043019 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Babazadeh, A. et al. High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Krenn, M., Hochrainer, A., Lahiri, M. & Zeilinger, A. Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. & Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    ADS  Article  Google Scholar 

  28. 28.

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Article  Google Scholar 

  29. 29.

    Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 375, 20150442 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Hong, C., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Article  Google Scholar 

  32. 32.

    Zhang, Y. et al. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2, e1501165 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Miatto, F. et al. Bounds and optimisation of orbital angular momentum bandwidths within parametric downconversion systems. Eur. Phys. J. D 66, 1–6 (2012).

    Article  Google Scholar 

  34. 34.

    Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

    ADS  Article  Google Scholar 

  35. 35.

    Erhard, M., Malik, M. & Zeilinger, A. A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2, 014001 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Huber, M. & de Vicente, J. I. Structure of multidimensional entanglement in multipartite systems. Phys. Rev. Lett. 110, 030501 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    Article  Google Scholar 

  38. 38.

    Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Lawrence, J. Mermin inequalities for perfect correlations in many-qutrit systems. Phys. Rev. A 95, 042123 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Graffitti, F., Kundys, D., Reid, D. T., Brańczyk, A. M. & Fedrizzi, A. Pure down-conversion photons through sub-coherence-length domain engineering. Quantum Sci. Technol. 2, 035001 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008).

    Article  Google Scholar 

  42. 42.

    Sheridan, L. & Scarani, V. Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Bocharov, A., Roetteler, M. & Svore, K. M. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, 012306 (2017).

    ADS  Article  Google Scholar 

Download references


We thank J. Lawrence, M. Huber, C. Brukner, A. Hochrainer, R. Fickler, T. Scheidl, F. Steinlechner and X. Gu for fruitful discussions. This work was supported by the Austrian Academy of Sciences (ÖAW), by the European Research Council (SIQS grant no. 600645 EU-FP7-ICT) and the Austrian Science Fund (FWF) with SFB F40 (FOQUS) and FWF project CoQuS no. W1210-N16. M.M. acknowledges support from the European Commission through a Marie Curie fellowship (OAMGHZ) and the joint Czech–Austrian project MultiQUEST (FWF I3053-N27), and the QuantERA ERA-NET Co-fund (FWF I3553-N36).

Author information




The computer algorithm Melvin inspired an initial practical solution for the experiment. M.E. and M.M. performed the experiment. All authors analysed the data, discussed the results and wrote the manuscript. A.Z. initiated the research and supervised the project.

Corresponding authors

Correspondence to Manuel Erhard or Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erhard, M., Malik, M., Krenn, M. et al. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nature Photon 12, 759–764 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing