Review Article | Published:

Quantitative phase imaging in biomedicine

Nature Photonicsvolume 12pages578589 (2018) | Download Citation

Abstract

Quantitative phase imaging (QPI) has emerged as a valuable method for investigating cells and tissues. QPI operates on unlabelled specimens and, as such, is complementary to established fluorescence microscopy, exhibiting lower phototoxicity and no photobleaching. As the images represent quantitative maps of optical path length delays introduced by the specimen, QPI provides an objective measure of morphology and dynamics, free of variability due to contrast agents. Owing to the tremendous progress witnessed especially in the past 10–15 years, a number of technologies have become sufficiently reliable and translated to biomedical laboratories. Commercialization efforts are under way and, as a result, the QPI field is now transitioning from a technology-development-driven to an application-focused field. In this Review, we aim to provide a critical and objective overview of this dynamic research field by presenting the scientific context, main principles of operation and current biomedical applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Evanko, D., Heinrichs, A. & Rosenthal, C. Milestones in light microscopy. Nat. Cell Biol. S5–S20 (2009).

  2. 2.

    Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, New York, 2011).

  3. 3.

    Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–418 (1873)..

  4. 4.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

  5. 5.

    Tuchin, V. V. & Society of Photo-optical Instrumentation Engineers. Tissue Optics: Light Scattering Methods and Instruments For Medical Diagnosis 2nd edn (SPIE/International Society for Optical Engineering, Bellingham, 2007).

  6. 6.

    Diaspro, A. Optical Fluorescence Microscopy (Springer, Berlin, 2011).

  7. 7.

    Kumar, V., Abbas, A. K., Fausto, N. & Aster, J. C. Robbins and Cotran Pathologic Basis of Disease (Elsevier Health Sciences, Oxford, 2014).

  8. 8.

    Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

  9. 9.

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, 1999).

  10. 10.

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

  11. 11.

    Lohmann, A. Optische Einseitenbandübertragung angewandt auf das Gabor-Mikroskop. Opt. Acta 3, 97–99 (1956)..

  12. 12.

    Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962).

  13. 13.

    Poon, T.-C. Digital Holography and Three-dimensional Display: Principles and Applications (Springer Science & Business Media, New York, 2006).

  14. 14.

    Boas, D. A., Pitris, C. & Ramanujam, N. (eds) Handbook of Biomedical Optics (CRC Press, Boca Raton, 2016).

  15. 15.

    Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291–293 (1999).

  16. 16.

    Creath, K. Phase-measurement interferometry techniques. Prog. Opt. 26, 349–393 (1988).

  17. 17.

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

  18. 18.

    deBoer, J. F., Milner, T. E., vanGemert, M. J. C. & Nelson, J. S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997).

  19. 19.

    Izatt, J. A., Kulkami, M. D., Yazdanfar, S., Barton, J. K. & Welch, A. J. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy. Opt. Lett. 22, 1439–1441 (1997).

  20. 20.

    Hitzenberger, C. K. & Fercher, A. F. Differential phase contrast in optical coherence tomography. Opt. Lett. 24, 622–624 (1999).

  21. 21.

    Yang, C. H. et al. Interferometric phase-dispersion microscopy. Opt. Lett. 25, 1526–1528 (2000).

  22. 22.

    Yang, C. et al. Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics. Opt. Lett. 26, 1271–1273 (2001).

  23. 23.

    Choma, M. A., Ellerbee, A. K., Yang, C. H., Creazzo, T. L. & Izatt, J. A. Spectral-domain phase microscopy. Opt. Lett. 30, 1162–1164 (2005).

  24. 24.

    Joo, C., Akkin, T., Cense, B., Park, B. H. & de Boer, J. E. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt. Lett. 30, 2131–2133 (2005).

  25. 25.

    Paganin, D. & Nugent, K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586–2589 (1998).

  26. 26.

    Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

  27. 27.

    Liebling, M., Blu, T. & Unser, M. Complex-wave retrieval from a single off-axis hologram. J. Opt. Soc. Am. A 21, 367–377 (2004).

  28. 28.

    Michelson, A. A. & Morley, E. W. On the relative motion of the luminiferous ether. Am. J. Sci. 34, 333–345 (1887).

  29. 29.

    Hosseini, P. et al. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt. Lett. 41, 1656–1659 (2016).

  30. 30.

    A triumph of sensitivity. Nat. Photon. 11, 677 (2017).

  31. 31.

    Popescu, G., Ikeda, T., Dasari, R. R. & Feld, M. S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006).

  32. 32.

    Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photon. 8, 256–263 (2014).

  33. 33.

    Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).

  34. 34.

    Stockton, P. A., Field, J. J. & Bartels, R. A. Single pixel quantitative phase imaging with spatial frequency projections. Methods 136, 24–34 (2018).

  35. 35.

    Yin, Z. Z., Kanade, T. & Chen, M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 16, 1047–1062 (2012).

  36. 36.

    Dubois, F., Requena, M.-L. N., Minetti, C., Monnom, O. & Istasse, E. Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt. 43, 1131–1139 (2004).

  37. 37.

    Mico, V., Zalevsky, Z. & García, J. Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution. Opt. Commun. 281, 4273–4281 (2008).

  38. 38.

    Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).

  39. 39.

    Rubin, M., Dardikman, G., Mirsky, S. K., Turko, N. A. & Shaked, N. T. Six-pack off-axis holography. Opt. Lett. 42, 4611–4614 (2017).

  40. 40.

    Chen, S., Li, C. & Zhu, Y. Sensitivity evaluation of quantitative phase imaging: a study of wavelength shifting interferometry. Opt. Lett. 42, 1088–1091 (2017).

  41. 41.

    Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117–1125 (2017).

  42. 42.

    Rivenson, Y., Zhang, Y., Günaydin, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018).

  43. 43.

    Wu, Y. et al. Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery. Optica 5, 704–710 (2018).

  44. 44.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

  45. 45.

    Ding, H. F., Wang, Z., Nguyen, F., Boppart, S. A. & Popescu, G. Fourier transform light scattering of inhomogeneous and dynamic structures. Phys. Rev. Lett. 101, 238102 (2008).

  46. 46.

    Berne, B. J. & Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, New York, 1976).

  47. 47.

    Wang, R. et al. Dispersion-relation phase spectroscopy of intracellular transport. Opt. Express 19, 20571–20579 (2011).

  48. 48.

    Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).

  49. 49.

    Fercher, A., Bartelt, H., Becker, H. & Wiltschko, E. Image formation by inversion of scattered field data: experiments and computational simulation. Appl. Opt. 18, 2427–2439 (1979).

  50. 50.

    Lauer, V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205, 165–176 (2002).

  51. 51.

    Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

  52. 52.

    Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photon. 7, 113–117 (2013).

  53. 53.

    Barty, A., Nugent, K. A., Roberts, A. & Paganin, D. Quantitative phase tomography. Opt. Commun. 175, 329–336 (2000).

  54. 54.

    Charrière, F. et al. Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178–180 (2006).

  55. 55.

    Kuś, A., Dudek, M., Kemper, B., Kujawińska, M. & Vollmer, A. Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt. 19, 046009 (2014).

  56. 56.

    Habaza, M., Gilboa, B., Roichman, Y. & Shaked, N. T. Tomographic phase microscopy with 180 degrees rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881–1884 (2015).

  57. 57.

    Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017).

  58. 58.

    Horstmeyer, R., Chung, J., Ou, X., Zheng, G. & Yang, C. Diffraction tomography with Fourier ptychography. Optica 3, 827–835 (2016).

  59. 59.

    Kim, M.-K. Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography. Opt. Express 7, 305–310 (2000).

  60. 60.

    Pan, Y., Lankenou, E., Welzel, J., Birngruber, R. & Engelhardt, R. Optical coherence-gated imaging of biological tissues. IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).

  61. 61.

    Schmitt, J. M. Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).

  62. 62.

    Bao, C., Barbastathis, G., Ji, H., Shen, Z. & Zhang, Z. Coherence retrieval using trace regularization. SIAM J. Imaging Sci. 11, 679–706 (2018).

  63. 63.

    Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015).

  64. 64.

    Cotte, Y. et al. Realistic 3D coherent transfer function inverse filtering of complex fields. Biomed. Opt. Express 2, 2216–2230 (2011).

  65. 65.

    Jourdain, P. et al. Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J. Neurosci. 31, 11846–11854 (2011).

  66. 66.

    Jourdain, P. et al. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABAA receptor. PLoS ONE 7, e51041 (2012).

  67. 67.

    Marquet, P., Depeursinge, C. & Magistretti, P. J. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1, 020901 (2014).

  68. 68.

    Weitzman, J. B. Growing without a size checkpoint. J. Biol. 2, 3 (2003).

  69. 69.

    Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

  70. 70.

    Mitchison, J. M. Single cell studies of the cell cycle and some models. Theor. Biol. Med. Model. 2, 4 (2005).

  71. 71.

    Popescu, G. et al. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008).

  72. 72.

    Mitchison, J. M. Growth during the cell cycle. Int. Rev. Cytol. 226, 165–258 (2003).

  73. 73.

    Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in proliferating animal cells. Science 325, 167–171 (2009).

  74. 74.

    Davies, H. G. & Wilkins, M. H. F. Interference microscopy and mass determination. Nature 161, 541 (1952).

  75. 75.

    Barer, R. Interference microscopy and mass determination. Nature 169, 366–367 (1952).

  76. 76.

    Zicha, D. & Dunn, G. A. An image-processing system for cell behavior studies in subconfluent cultures. J. Microsc. 179, 11–21 (1995).

  77. 77.

    Zhao, H., Brown, P. H. & Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 100, 2309–2317 (2011).

  78. 78.

    Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl Acad. Sci. USA 108, 13124–13129 (2011).

  79. 79.

    Sung, Y., Choi, W., Lue, N., Dasari, R. R. & Yaqoob, Z. Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS ONE 7, e49502 (2012).

  80. 80.

    Shribak, M., Larkin, K. G. & Biggs, D. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy. J. Biomed. Opt. 22, 016006 (2017).

  81. 81.

    Bedrossian, M., Lindensmith, C. & Nadeau, J. L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from Enceladus and other icy worlds. Astrobiology 17, 913–925 (2017).

  82. 82.

    Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22, 6661–6673 (2014).

  83. 83.

    Bon, P. et al. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat. Commun. 6, 7764 (2015).

  84. 84.

    Bon, P., Aknoun, S., Monneret, S. & Wattellier, B. Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination. Opt. Express 22, 8654–8671 (2014).

  85. 85.

    Mudanyali, O. et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nat. Photon. 7, 247–254 (2013).

  86. 86.

    Yu, X. et al. Measurement of the traction force of biological cells by digital holography. Biomed. Opt. Express 3, 153–159 (2012).

  87. 87.

    Kemper, B. et al. Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11, 034005–034008 (2006).

  88. 88.

    Simon, B., Debailleul, M., Beghin, A., Tourneur, Y. & Haeberle, O. High-resolution tomographic diffractive microscopy of biological samples. J. Biophoton. 3, 462–467 (2010).

  89. 89.

    Hsu, W.-C., Su, J.-W., Chang, C.-C. & Sung, K.-B. Investigating the backscattering characteristics ofindividual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions. Proc. SPIE 8553, 85531O (2012).

  90. 90.

    Shaked, N. T., Satterwhite, L. L., Truskey, G. A., Wax, A. P. & Telen, M. J. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. J. Biomed. Opt. 16, 030506 (2011).

  91. 91.

    Lee, S. et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci. Rep. 7, 1039 (2017).

  92. 92.

    Khan, S., Jesacher, A., Nussbaumer, W., Bernet, S. & Ritsch‐Marte, M. Quantitative analysis of shape and volume changes in activated thrombocytes in real time by single‐shot spatial light modulator‐based differential interference contrast imaging. J. Biophoton. 4, 600–609 (2011).

  93. 93.

    Haifler, M. et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells. Fertil. Steril. 104, 43–47.e42 (2015).

  94. 94.

    Lenz, P. et al. Digital holographic microscopy quantifies the degree of inflammation in experimental colitis. Integr. Biol. 5, 624–630 (2013).

  95. 95.

    Bettenworth, D. et al. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS ONE 9, e107317 (2014).

  96. 96.

    Kwon, S. et al. Mitochondria-targeting indolizino [3,2-c] quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur. J. Med. Chem. 148, 116–127 (2018).

  97. 97.

    Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016).

  98. 98.

    Yoon, J. et al. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci. Rep. 7, 6654 (2017).

  99. 99.

    Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci. Adv. 3, e1700606 (2017).

  100. 100.

    Hejna, M., Jorapur, A., Song, J. S. & Judson, R. L. High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells. Sci. Rep. 7, 11943 (2017).

  101. 101.

    Holmström, O. et al. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium. Global Health Action 10, 1337325 (2017).

  102. 102.

    Huang, B., Bates, M. & Zhuang, X. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

  103. 103.

    Alexandrov, S., Hillman, T., Gutzler, T. & Sampson, D. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 97, 168102 (2006).

  104. 104.

    Pavillon, N., Hobro, A. J., Akira, S. & Smith, N. I. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1711872115 (2018).

  105. 105.

    Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995).

  106. 106.

    Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.Sci. Transl. Med. 6, 267ra175 (2014).

  107. 107.

    Popescu, G. et al. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004).

  108. 108.

    Popescu, G., Badizadegan, K., Dasari, R. R. & Feld, M. S. Observation of dynamic subdomains in red blood cells. J. Biomed. Opt. Lett. 11, 040503 (2006).

  109. 109.

    Ikeda, T., Popescu, G., Dasari, R. R. & Feld, M. S. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1168 (2005).

  110. 110.

    Popescu, G. et al. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. Lett. 10, 060503 (2005).

  111. 111.

    Lue, N. et al. Tissue refractometry using Hilbert phase microscopy. Opt. Lett. 32, 3522–3524 (2007).

  112. 112.

    Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).

  113. 113.

    Uttam, S. et al. Early prediction of cancer progression by depth-resolved nanoscale mapping of nuclear architecture from unstained tissue specimens. Cancer Res. 75, 4718–4727 (2015).

  114. 114.

    Park, Y. K. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730–13735 (2008).

  115. 115.

    Hosseini, P. et al. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proc. Natl Acad. Sci. USA 113, 9527–9532 (2016).

  116. 116.

    Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

  117. 117.

    Mitchell, S., Roy, K., Zangle, T. A. & Hoffmann, A. Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation. Proc. Natl Acad. Sci. USA 115, E2888–E2897 (2018).

  118. 118.

    Kolman, P. & Chmelík, R. Coherence-controlled holographic microscope. Opt. Express 18, 21990–22004 (2010).

  119. 119.

    Štrbková, L. et al. The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 295, 70–77 (2016).

  120. 120.

    Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011).

  121. 121.

    Mir, M. et al. Label-free characterization of emerging human neuronal networks. Sci. Rep. 4, 04434 (2014).

  122. 122.

    Majeed, H., Nguyen, T. H., Kandel, M. E., Kajdacsy-Balla, A. & Popescu, G. Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM). Sci. Rep. 8, 6875 (2018).

  123. 123.

    Majeed, H. et al. Magnified image spatial spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging. Opt. Express 26, 5423–5440 (2018).

  124. 124.

    Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photon. Eng. 2, 2 (2016).

  125. 125.

    Kim, K. et al. Three dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 6, 36815 (2016).

  126. 126.

    Kim, K. et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2013).

Download references

Acknowledgements

Y.K.P. was supported by the National Research Foundation of Korea (2017M3C1A3013923, 2015R1A3A2066550, 2017K000396). G.P. was supported by the National Science Foundation (STC CBET 0939511, NSF BRAIN EAGER DBI 1450962, IIP-1353368).

Author information

Affiliations

  1. Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

    • YongKeun Park
  2. KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea

    • YongKeun Park
  3. Tomocube Inc., Daejeon, Republic of Korea

    • YongKeun Park
  4. Microvision and Microdiagnostic Group (SCI STI CHD), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • Christian Depeursinge
  5. Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

    • Christian Depeursinge
  6. Departments of Electrical and Computer Engineering and Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

    • Gabriel Popescu

Authors

  1. Search for YongKeun Park in:

  2. Search for Christian Depeursinge in:

  3. Search for Gabriel Popescu in:

Competing interests

Y.K.P. has financial interest in Tomocube. C.D. has financial interest in Lyncee Tech and Nanolive. G.P. has financial interest in Phi Optics. All these companies commercialize QPI instruments.

Corresponding author

Correspondence to Gabriel Popescu.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-018-0253-x