Quantum technologies with optically interfaced solid-state spins

Abstract

Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The NV centre in diamond and nearby nuclear spins.
Fig. 2: The silicon–vacancy centre in diamond and colour centres in silicon carbide.
Fig. 3: Rare-earth ions in crystals and optically active donors in silicon.
Fig. 4: Quantum registers for quantum networks and computing.
Fig. 5: Diverse modalities and applications of quantum sensing with impurity spins.
Fig. 6: Photonic engineering for solid-state spins.

References

  1. 1.

    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

  2. 2.

    Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

  3. 3.

    de Riedmatten, H. & Afzelius, M. in Engineering the Atom-Photon Interaction (eds Predojević, A. & Mitchell, M. W.) 241–273 (Springer, Cham, Switzerland, 2015).

  4. 4.

    Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).

  5. 5.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

  6. 6.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

  7. 7.

    DiVincenzo, D. P. The physical implementation of quantum computation. Fortschritte Phys. 48, 771–783 (2000).

  8. 8.

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

  9. 9.

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

  10. 10.

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–736 (2010).

  11. 11.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

  12. 12.

    Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013).

  13. 13.

    Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018).

  14. 14.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

  15. 15.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

  16. 16.

    Shiue, R. J. et al. Active 2D materials for on-chip nanophotonics and quantum optics. Nanophotonics 6, 1329–1342 (2017).

  17. 17.

    Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

  18. 18.

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

  19. 19.

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

  20. 20.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

  21. 21.

    Jarmola, A., Acosta, V. M., Jensen, K., Chemerisov, S. & Budker, D. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys. Rev. Lett. 108, 197601 (2012).

  22. 22.

    Astner, T. et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater. 17, 313–317 (2018).

  23. 23.

    Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotech. 7, 657–662 (2012).

  24. 24.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

  25. 25.

    Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2012).

  26. 26.

    Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

  27. 27.

    Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011).

  28. 28.

    Dréau, A., Maze, J. R., Lesik, M., Roch, J. F. & Jacques, V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B 85, 134107 (2012).

  29. 29.

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

  30. 30.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

  31. 31.

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

  32. 32.

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  33. 33.

    Pfender, M. et al. Protecting a diamond quantum memory by charge state control. Nano Lett. 17, 5931–5937 (2017).

  34. 34.

    Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

  35. 35.

    Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).

  36. 36.

    Ivády, V. et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys. Rev. B 92, 115206 (2015).

  37. 37.

    Reiserer, A. et al. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X 6, 021040 (2016).

  38. 38.

    Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

  39. 39.

    Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

  40. 40.

    Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotech. 9, 171–176 (2014).

  41. 41.

    Liu, G.-Q. et al. Single-shot readout of a nuclear spin weakly coupled to a nitrogen-vacancy center at room temperature. Phys. Rev. Lett. 118, 150504 (2017).

  42. 42.

    Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).

  43. 43.

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

  44. 44.

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

  45. 45.

    Barclay, P. E., Fu, K.-M. C., Santori, C., Faraon, A. & Beausoleil, R. G. Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X 1, 011007 (2011).

  46. 46.

    Faraon, A., Santori, C., Huang, Z., Acosta, V. M. & Beausoleil, R. G. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

  47. 47.

    Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

  48. 48.

    Schröder, T. et al. Quantum nanophotonics in diamond. J. Opt. Soc. Am. B 33, B65–B83 (2016).

  49. 49.

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  50. 50.

    Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

  51. 51.

    Dréau, A., Tcheborateva, A., El Mahdaoui, A., Bonato, C. & Hanson, R. Quantum frequency conversion to telecom of single photons from a nitrogen-vacancy center in diamond. Phys. Rev. Appl. 9, 064031 (2018).

  52. 52.

    Hepp, C. et al. Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014).

  53. 53.

    Rogers, L. J. et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun. 5, 4739 (2014).

  54. 54.

    Pingault, B. et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263601 (2014).

  55. 55.

    Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

  56. 56.

    Pingault, B. et al. Coherent control of the silicon-vacancy spin in diamond. Nat. Commun. 8, 15579 (2017).

  57. 57.

    Becker, J. N. et al. All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures. Phys. Rev. Lett. 120, 053603 (2018).

  58. 58.

    Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

  59. 59.

    Rogers, L. J. et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys. Rev. B 89, 235101 (2014).

  60. 60.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

  61. 61.

    Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

  62. 62.

    Siyushev, P. et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 96, 081201 (2017).

  63. 63.

    Green, B. L. et al. Neutral silicon-vacancy center in diamond: spin polarization and lifetimes. Phys. Rev. Lett. 119, 096402 (2017).

  64. 64.

    Rose, B. C. et al. Observation of an environmentally insensitive solid state spin defect in diamond. Science 361, 60–63 (2018).

  65. 65.

    Tchernij, S. D. et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photon. 4, 2580–2586 (2017).

  66. 66.

    Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017).

  67. 67.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  68. 68.

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

  69. 69.

    Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

  70. 70.

    Whiteley, S. J. et al. Probing spin-phonon interactions in silicon carbide with Gaussian acoustics. Preprint at https://arxiv.org/abs/1804.10996 (2018).

  71. 71.

    Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).

  72. 72.

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2014).

  73. 73.

    Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

  74. 74.

    Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

  75. 75.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2014).

  76. 76.

    Yang, L.-P. et al. Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014).

  77. 77.

    Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

  78. 78.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

  79. 79.

    de las Casas, C. F. et al. Stark tuning and electrical charge state control of single divacancies in silicon carbide. Appl. Phys. Lett. 111, 262403 (2017).

  80. 80.

    Radulaski, M. et al. Photonic crystal cavities in cubic (3C) polytype silicon carbide films. Opt. Express 21, 32623–32629 (2013).

  81. 81.

    Calusine, G., Politi, A. & Awschalom, D. D. Cavity-enhanced measurements of defect spins in silicon carbide. Phys. Rev. Appl. 6, 014019 (2016).

  82. 82.

    Soykal, O., Dev, P. & Economou, S. E. Silicon vacancy center in 4H-SiC: electronic structure and spin-photon interfaces. Phys. Rev. B 93, 081207(R) (2016).

  83. 83.

    Kraus, H. et al. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci. Rep. 4, 5303 (2014).

  84. 84.

    Niethammer, M. et al. Vector magnetometry using silicon vacancies in 4H-SiC under ambient conditions. Phys. Rev. Appl. 6, 034001 (2016).

  85. 85.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

  86. 86.

    Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5. Phys. Rev. B 68, 085109 (2003).

  87. 87.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

  88. 88.

    O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

  89. 89.

    Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

  90. 90.

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014).

  91. 91.

    Eichhammer, E., Utikal, T., Götzinger, S. & Sandoghdar, V. Spectroscopic detection of single Pr3+ ions on the 3H41D2 transition. New J. Phys. 17, 083018 (2015).

  92. 92.

    Nakamura, I., Yoshihiro, T., Inagawa, H., Fujiyoshi, S. & Matsushita, M. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci. Rep. 4, 7364 (2015).

  93. 93.

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

  94. 94.

    Siyushev, P. et al. Coherent properties of single rare-earth spin qubits. Nat. Commun. 5, 3895 (2014).

  95. 95.

    Xia, K. et al. Optical and spin properties of a single praseodymium ion in a crystal. Preprint at http://arxiv.org/abs/1706.08736 (2017).

  96. 96.

    Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005).

  97. 97.

    Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

  98. 98.

    Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

  99. 99.

    Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Preprint at http://arxiv.org/abs/1803.07520 (2018).

  100. 100.

    Dibos, A., Raha, M., Phenicie, C. & Thompson, J. Isolating and enhancing the emission of single erbium ions using a silicon nanophotonic cavity. Phys. Rev. Lett. 120, 243601 (2018).

  101. 101.

    Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotech. 9, 986–991 (2014).

  102. 102.

    Tosi, G., Mohiyaddin, F. A., Huebl, H. & Morello, A. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si. AIP Adv. 4, 087122 (2014).

  103. 103.

    Morse, K. J. et al. A photonic platform for donor spin qubits in silicon. Sci. Adv. 3, e1700930 (2017).

  104. 104.

    Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

  105. 105.

    Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

  106. 106.

    Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012).

  107. 107.

    Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

  108. 108.

    Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

  109. 109.

    Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

  110. 110.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

  111. 111.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

  112. 112.

    Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

  113. 113.

    Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photon. 10, 507–511 (2016).

  114. 114.

    Heshami, K. et al. Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity. Phys. Rev. A 89, 040301 (2014).

  115. 115.

    Poem, E. et al. Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond. Phys. Rev. B 91, 205108 (2015).

  116. 116.

    Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

  117. 117.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

  118. 118.

    Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

  119. 119.

    Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

  120. 120.

    Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013).

  121. 121.

    Wang, Y. et al. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano 9, 7769–7774 (2015).

  122. 122.

    Kong, F. et al. Direct measurement of topological numbers with spins in diamond. Phys. Rev. Lett. 117, 060503 (2016).

  123. 123.

    Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

  124. 124.

    Simpson, D. A. et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017).

  125. 125.

    Thiel, L. et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nanotech. 11, 677–681 (2016).

  126. 126.

    Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotech. 11, 700–705 (2016).

  127. 127.

    Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

  128. 128.

    Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

  129. 129.

    Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

  130. 130.

    Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

  131. 131.

    Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

  132. 132.

    Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

  133. 133.

    Jakobi, I. et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotech. 12, 67–72 (2016).

  134. 134.

    Laraoui, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).

  135. 135.

    Kong, X., Stark, A., Du, J., McGuinness, L. P. & Jelezko, F. Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy. Phys. Rev. Appl. 4, 024004 (2015).

  136. 136.

    Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 12279 (2016).

  137. 137.

    Pfender, M. et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat. Commun. 8, 834 (2017).

  138. 138.

    Rosskopf, T., Zopes, J., Boss, J. M. & Degen, C. L. A quantum spectrum analyzer enhanced by a nuclear spin memory. npj Quantum Inf. 3, 33 (2017).

  139. 139.

    Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

  140. 140.

    Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354 (2018).

  141. 141.

    Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840 (2017).

  142. 142.

    Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837 (2017).

  143. 143.

    Astner, T. et al. Coherent coupling of remote spin ensembles via a cavity bus. Phys. Rev. Lett. 118, 140502 (2017).

  144. 144.

    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

  145. 145.

    Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

  146. 146.

    Wolfe, C. S. et al. Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet. Phys. Rev. B 89, 180406 (2014).

  147. 147.

    Andrich, P. et al. Long-range spin wave mediated control of defect qubits in nanodiamonds. npj Quantum Inf. 3, 28 (2017).

  148. 148.

    Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

  149. 149.

    Grote, R. R. et al. Imaging a nitrogen-vacancy center with a diamond immersion metalens. Preprint at http://arxiv.org/abs/1711.00901 (2017).

  150. 150.

    Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013).

  151. 151.

    Fedotov, I. V. et al. Electron spin manipulation and readout through an optical fiber. Sci. Rep. 4, 5362 (2015).

  152. 152.

    Kehayias, P. et al. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nat. Commun. 8, 188 (2017).

  153. 153.

    van Dam, S. B., Humphreys, P. C., Rozpędek, F., Wehner, S. & Hanson, R. Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Sci. Technol. 2, 034002 (2017).

  154. 154.

    Geng, J. et al. Experimental time-optimal universal control of spin qubits in solids. Phys. Rev. Lett. 117, 170501 (2016).

  155. 155.

    Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).

  156. 156.

    Hirose, M. & Cappellaro, P. Coherent feedback control of a single qubit in diamond. Nature 532, 77–80 (2016).

  157. 157.

    Unden, T. et al. Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett. 116, 230502 (2016).

  158. 158.

    Lesik, M. et al. Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).

  159. 159.

    Michl, J. et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl. Phys. Lett. 104, 102407 (2014).

  160. 160.

    Fukui, T. et al. Perfect selective alignment of nitrogen-vacancy centers in diamond. Appl. Phys. Express 7, 055201 (2014).

Download references

Acknowledgements

We thank A. Crook, F. J. Heremans, P. Jerger, K. Miao, T. Taminiau, G. Wolfowicz and T. Zhong for illuminating discussions. D.D.A. and B.B.Z. acknowledge support from the National Science Foundation grant EFMA-164109, the Air Force Office of Scientific Research grants FA9550-14-1-0231 and FA9550-15-1-0029, and the Army Research Office QSEP grant W911NF-15-2-0058. R.H. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through a VICI grant and the European Research Council (ERC) through a Consolidator Grant. J.W. acknowledges support from ERC grant SMeL, the BW foundation, BMBF grant BrainQSens, and the Max Planck Society.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awschalom, D.D., Hanson, R., Wrachtrup, J. et al. Quantum technologies with optically interfaced solid-state spins. Nature Photon 12, 516–527 (2018). https://doi.org/10.1038/s41566-018-0232-2

Download citation

Further reading