Efficient light generation from enhanced inelastic electron tunnelling

Abstract

Light emission from biased tunnel junctions has recently gained much attention owing to its unique potential to create ultracompact optical sources with terahertz modulation bandwidth1,2,3,4,5. The emission originates from an inelastic electron tunnelling process in which electronic energy is transferred to surface plasmon polaritons and subsequently converted to radiation photons by an optical antenna. Because most of the electrons tunnel elastically, the emission efficiency is typically about 10−5–10−4. Here, we demonstrate efficient light generation from enhanced inelastic tunnelling using nanocrystals assembled into metal–insulator–metal junctions. The colour of the emitted light is determined by the optical antenna and thus can be tuned by the geometry of the junction structures. The efficiency of far-field free-space light generation reaches ~2%, showing an improvement of two orders of magnitude over previous work3,4. This brings on-chip ultrafast and ultracompact light sources one step closer to reality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Light emission from an electrically driven optical antenna engineered at the atomic level.
Fig. 2: Investigation of Ag square-prism-based tunnel junctions.
Fig. 3: Numerical and experimental study of Ag nanobar-based tunnel junctions.
Fig. 4: Silver nanobar-based tunnel junction with optimized EQE.

References

  1. 1.

    Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    ADS  Article  Google Scholar 

  2. 2.

    Davis, L. C. Theory of surface-plasmon excitation in metal–insulator–metal tunnel junctions. Phys. Rev. B 16, 2482–2490 (1977).

    ADS  Article  Google Scholar 

  3. 3.

    Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotech. 10, 1058–1063 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Persson, B. N. J. & Baratoff, A. Theory of photon-emission in electron-tunneling to metallic particles. Phys. Rev. Lett. 68, 3224–3227 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    Ranuárez, J. C., Deen, M. J. & Chen, C.-H. A review of gate tunneling current in MOS devices. Microelectron. Reliab. 46, 1939–1956 (2006).

    Article  Google Scholar 

  7. 7.

    McCarthy, S. L. & Lambe, J. Enhancement of light emission from metal–insulator–metal tunnel junctions. Appl. Phys. Lett. 30, 427–429 (1977).

    ADS  Article  Google Scholar 

  8. 8.

    Kirtley, J., Theis, T. N. & Tsang, J. C. Light-emission from tunnel-junctions on gratings. Phys. Rev. B 24, 5650–5663 (1981).

    ADS  Article  Google Scholar 

  9. 9.

    Berndt, R., Gimzewski, J. K. & Johansson, P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796–3799 (1991).

    ADS  Article  Google Scholar 

  10. 10.

    Sparks, P. D., Sjodin, T., Reed, B. W. & Stege, J. Light-emission from the slow mode of tunnel-junctions on short-period diffraction gratings. Phys. Rev. Lett. 68, 2668–2671 (1992).

    ADS  Article  Google Scholar 

  11. 11.

    Junichi, W., Yoichi, U., Junichi, M. & Sukekatsu, U. Light emission from Si-metal–oxide–semiconductor tunnel junctions. Jpn. J. Appl. Phys. 32, 99 (1993).

    Google Scholar 

  12. 12.

    Siu, D. P., Jain, R. K. & Gustafson, T. K. Stimulated electron tunneling in metal–barrier–metal structures due to surface plasmons. Appl. Phys. Lett. 28, 407–410 (1976).

    ADS  Article  Google Scholar 

  13. 13.

    Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Jayanti, S. V. et al. Low-temperature enhancement of plasmonic performance in silver films. Opt. Mater. Express 5, 1147–1155 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Gao, B., Arya, G. & Tao, A. R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotech. 7, 433–437 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C. 112, 17983–17987 (2008).

    Article  Google Scholar 

  18. 18.

    Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Hsu, S.-W. & Tao, A. R. Halide-directed synthesis of square prismatic Ag nanocrystals by the polyol method. Chem. Mater. (in the press); https://doi.org/10.1021/acs.chemmater.8b01166.

  20. 20.

    Uskov, A. V. et al. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale 8, 14573–14579 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Capasso, F., Mohammed, K. & Cho, A. Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J. Quantum Electron. 22, 1853–1869 (1986).

    ADS  Article  Google Scholar 

  22. 22.

    Braginskiĭ, L. S. & Baskin, É. M. Inelastic resonant tunneling. Phys. Solid State 40, 1051–1055 (1998).

    ADS  Article  Google Scholar 

  23. 23.

    Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274–1278 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    Du, W., Wang, T., Chu, H.-S. & Nijhuis, C. A. Highly efficient on-chip direct electronic–plasmonic transducers. Nat. Photon. 11, 623–627 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Fang, Y. & Sun, M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    de Vega, S. & García de Abajo, F. J. Plasmon generation through electron tunneling in graphene. ACS Photonics 4, 2367–2375 (2017).

    Article  Google Scholar 

  27. 27.

    Rawat, A. et al. Optical band gap of polyvinylpyrrolidone/polyacrilamide blend thin films. Indian J. Pure Appl. Phys. 50, 100–104 (2012).

    ADS  Google Scholar 

  28. 28.

    Palik, E. D. Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998).

  29. 29.

    König, T. A. F. et al. Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8, 6182–6192 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office (W911NF-16-2-0156). We thank J. Conway for suggestions.

Author information

Affiliations

Authors

Contributions

Z.L. conceived the project. H.Q. and S.-W.H. designed the structures. H.Q. performed the experiments. S.-W.H. and K.G. prepared and characterized the Ag nanocrystals. H.Q. performed the theoretical work. H.Q., S.-W.H., K.G., C.T.R., J.Z., D.L., A.R.T. and Z.L. wrote the manuscript. All authors analysed the data and contributed to the discussion. A.R.T. and Z.L. supervised the research.

Corresponding authors

Correspondence to Andrea R. Tao or Zhaowei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional simulation and theoretical results, and discussions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Hsu, SW., Gurunatha, K. et al. Efficient light generation from enhanced inelastic electron tunnelling. Nature Photon 12, 485–488 (2018). https://doi.org/10.1038/s41566-018-0216-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing