Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A phonon laser operating at an exceptional point


Non-Hermitian physical systems have attracted considerable attention lately for their unconventional behaviour around exceptional points (EPs)—spectral singularities at which eigenvalues and eigenvectors coalesce. In particular, many new EP-related concepts such as unidirectional lasing and invisibility, as well as chiral transmission, have been realized. Given the progress in understanding the physics of EPs in various photonic structures, it is surprising that one of the oldest theoretical predictions associated with them, a remarkable broadening of the laser linewidth at an EP, has been probed only indirectly so far. Here, we fill this gap by steering a phonon laser through an EP in a compound optomechanical system formed by two coupled resonators. We observe a pronounced linewidth broadening of the mechanical lasing mode generated in one of the resonators when the system approaches the EP.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phonon lasing in a compound resonator system.
Fig. 2: Tuning a phonon laser to an exceptional point.
Fig. 3: The threshold of the phonon laser before and after the exceptional point.
Fig. 4: Linewidth enhancement of a phonon laser at an exceptional point.


  1. 1.

    Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  3. 3.

    Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  7. 7.

    Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  11. 11.

    Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity–time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Liu, Z.-P. et al. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett. 117, 110802 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Chen, W., Özdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Xu, H., Mason, D., Jiang, L. & Harris, G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Wenzel, H., Bandelow, U., Wunsche, H. J. & Rehberg, J. Mechanisms of fast self pulsations in two-section DFB lasers. IEEE J. Quantum Electron. 32, 69–78 (1996).

    ADS  Article  Google Scholar 

  22. 22.

    Berry, M. Mode degeneracies and the Petermann excess-noise factor for unstable lasers. J. Mod. Opt. 50, 63–81 (2003).

    ADS  Article  MATH  Google Scholar 

  23. 23.

    Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1948 (1958).

    ADS  Article  Google Scholar 

  24. 24.

    Peterman, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron. QE-15, 566–570 (1979).

    ADS  Article  Google Scholar 

  25. 25.

    Siegman, A. E. Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers. Phys. Rev. A 39, 1253–1263 (1989).

    ADS  Article  Google Scholar 

  26. 26.

    Grangier, P. & Poizat, J. P. A simple quantum picture for the Petermann excess noise factor. Eur. Phys. J. D 1, 97–104 (1998).

    ADS  Article  Google Scholar 

  27. 27.

    Hamel, W. A. & Woerdman, J. P. Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its longitudinal eigenmodes. Phys. Rev. Lett. 64, 1506 (1990).

    ADS  Article  Google Scholar 

  28. 28.

    Cheng, Y.-J., Fanning, C. G. & Siegman, A. E. Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes. Phys. Rev. Lett. 77, 627–630 (1996).

    ADS  Article  Google Scholar 

  29. 29.

    van Eijkelenborg, M. A., Lindberg, Å. M., Thijssen, M. S. & Woerdman, J. P. Resonance of quantum noise in an unstable cavity laser. Phys. Rev. Lett. 77, 4314–4317 (1996).

    ADS  Article  Google Scholar 

  30. 30.

    Schomerus, H., Frahm, K. M., Patra, M. & Beenakker, C. W. J. Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles. Phys. A 278, 469–496 (2000).

    Article  Google Scholar 

  31. 31.

    Lee, S.-Y. et al. Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity. Phys. Rev. A 78, 015805 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Yoo, G., Sim, H.-S. & Schomerus, H. Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators. Phys. Rev. A 84, 063833 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Schomerus, H. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A 79, 061801(R) (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Chong, Y. D. & Douglas Stone, A. General linewidth formula for steady-state multimode lasing in arbitrary cavities. Phys. Rev. Lett. 109, 063902 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Pick, A. et al. Ab initio multimode linewidth theory for arbitrary inhomogeneous laser cavities. Phys. Rev. A 91, 063806 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).

    Article  Google Scholar 

  38. 38.

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Cartarius, H., Main, J. & Wunner, G. Exceptional points in atomic spectra. Phys. Rev. Lett. 99, 173003 (2007).

    ADS  Article  Google Scholar 

Download references


This work was supported by NSF grant no. EFMA1641109, ARO grant no. W911NF1210026, ARO grant no. W911NF1710189 and the European Commission under project NHQWAVE (MSCA-RISE 691209). S.K.O. was supported by ARO grant no. W911NF-16-1-0339. S.K.O thanks J. Mateo for his continuous support. J.Z. is supported by the NSFC under grant nos. 61622306, 11674194. Y.-X.L. is supported by the NSFC under grant no. 61025022. Y.-X.L. and J.Z. are supported by the National Basic Research Program of China (973 Program) under grant no. 2014CB921401, the Tsinghua University Initiative Scientific Research Program and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. F.N. is partially supported by the MURI Center for Dynamic Magneto-Optics via AFOSR Award no. FA9550-14-1-0040, Asian Office of Aerospace Research and Development (AOARD) (grant no. FA2386-18-1-4045), the IMPACT program of JST, JSPS-RFBR grant no. 17-52-50023, CREST grant no. JPMJCR1676, RIKEN-AIST Joint Research Fund and the Sir John Templeton Foundation. K.P., D.O.K. and S.R. are supported by the Austrian Science Fund (FWF) through project no. SFB NextLite F49-P10. H. Yilmaz prepared the chromium-coated silica nanofibre tip for the experiments.

Author information




S.R., S.K.O, B.P. and L.Y. conceived the idea. B.P., J.Z., S.K.O., S.R. and L.Y. designed the experiments. J.Z and B.P. performed the experiments with help from G.Z. J.Z. analysed the experimental data, J.Z., K.P. and D.O.K. performed the theoretical analysis and numerical simulations, guided by S.K.O, Y.-X.L. and S.R. J.Z., S.K.O., S.R., Y.-X.L. and L.Y. wrote the manuscript with contributions from all authors. L.Y. supervised the research.

Corresponding author

Correspondence to Lan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary discussion and experimental details; Supplementary Figures 1–9; Supplementary References 1–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Peng, B., Özdemir, Ş.K. et al. A phonon laser operating at an exceptional point. Nature Photon 12, 479–484 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing