Experimental observation of a polarization vortex at an optical bound state in the continuum

Abstract

Optical bound states in the continuum (BICs) are states supported by a photonic structure that are compatible with free-space radiation, yet become perfectly bound for one specific in-plane momentum and wavelength1,2. Recently, it was predicted that light radiated by such modes around the BIC momentum–frequency condition should display a vortex in its far-field polarization profile, making the BIC topologically protected3. Here, we study a one-dimensional grating supporting a transverse magnetic mode with a BIC near 700 nm wavelength, verifying the existence of the BIC using reflection measurements, which show a vanishing reflection feature. Using k-space polarimetry, we measure the full polarization state of reflection around the BIC, highlighting the presence of a topological vortex. We use an electromagnetic dipole model to explain the observed BIC through destructive interference between two radiation channels, characteristic of a Friedrich–Wintgen-type BIC4. Our findings shed light on the origin of BICs and verify their topological nature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Reflection and predicted polarization of a 1D grating supporting a BIC.
Fig. 2: Polarization properties of the leaky modes and visualizing the mode dispersion surface.
Fig. 3: Collapsed resonance plots tracing polarization properties over the leaky-wave dispersion surface.
Fig. 4: Electromagnetic dipole model.

References

  1. 1.

    von Neuman, J. & Wigner, E. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929).

    MATH  Google Scholar 

  2. 2.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985).

    ADS  Article  Google Scholar 

  5. 5.

    Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Yang, Y., Peng, C., Liang, Y., Li, Z. & Noda, S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 37401 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Bulgakov, E. N. & Sadreev, A. F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A 90, 53801 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Silveirinha, M. G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 23813 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Monticone, F., & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Yanik, A. A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Foley, J. M., Young, S. M. & Phillips, J. D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating. Phys. Rev. B 89, 165111 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Sakoda, K. Optical Properties of Photonic Crystals 80 (Springer, Berlin, 2005).

  16. 16.

    Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21, 1210 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    Fallet, C. Angle Resolved Mueller Polarimetry, Applications to Periodic Structures. PhD thesis, Ecole Polytechnique X (2011).

  18. 18.

    Sersic, I., Tuambilangana, C. & Femius Koenderink, A. Fourier microscopy of single plasmonic scatterers. New J. Phys. 13, 83019 (2011).

    Article  Google Scholar 

  19. 19.

    Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Osorio, C. I., Mohtashami, A. & Koenderink, A. F. K-space polarimetry of bullseye plasmon antennas. Sci. Rep. 5, 9966 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Lepetit, T. & Kanté, B. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Phys. Rev. B 90, 241103 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO) and was performed at the research institute AMOLF. The authors thank R. Struik for the design used in Fig. 1. A.A. and F.M. acknowledge support from the Air Force Office of Scientific Research (MURI grant no. FA9550-17-1-0002), the Simons Foundation, the National Science Foundation and the Welch Foundation (grant no. F-1802).

Author information

Affiliations

Authors

Contributions

F.M., A.A. and A.F.K. initiated the research project, and A.A. and A.F.K. supervised throughout the project. All reflection and polarimetry experiments, as well as their analysis, were carried out by H.M.D., under the supervision of A.F.K. RCWA and full-wave simulations were performed by F.M. Dipole model calculations were carried out by H.M.D. and F.M. Sample fabrication and calibration of the experimental set-up were done by W.d.H. All authors discussed the results and were involved in writing the manuscript.

Corresponding author

Correspondence to A. Femius Koenderink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion; Supplementary Figures 1–10; Supplementary References 1–8.

Supplementary Video 1

Reflection, vertical polarization.

Supplementary Video 2

Reflection, horizontal polarization.

Supplementary Video 3

Eigenmode field distribution.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doeleman, H.M., Monticone, F., den Hollander, W. et al. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nature Photon 12, 397–401 (2018). https://doi.org/10.1038/s41566-018-0177-5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing