Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opto-thermoelectric nanotweezers

Abstract

Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of OTENT.
Fig. 2: Single-nanoparticle trapping and manipulation.
Fig. 3: In situ optical spectroscopy of different metal nanoparticles trapped via OTENT.
Fig. 4: Parallel and multiple trapping via OTENT.

References

  1. Lehmuskero, A. et al. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015).

    Article  Google Scholar 

  2. Li, Z., Mao, W., Devadas, M. S. & Hartland, G. V. Absorption spectroscopy of single optically trapped gold nanorods. Nano. Lett. 15, 7731–7735 (2015).

    Article  ADS  Google Scholar 

  3. Selhuber-Unkel, C. et al. Quantitative optical trapping of single gold nanorods. Nano. Lett. 8, 2998–3003 (2008).

    Article  ADS  Google Scholar 

  4. Bosanac, L., Aabo, T., Bendix, P. M. & Oddershede, L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano. Lett. 8, 1486–1491 (2008).

    Article  ADS  Google Scholar 

  5. Pelton, M. et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt. Lett. 31, 2075–2077 (2006).

    Article  ADS  Google Scholar 

  6. Hansen, P. M., Bhatia, V. K., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano. Lett. 5, 1937–1942 (2005).

    Article  ADS  Google Scholar 

  7. Yan, Z., Sajjan, M. & Scherer, N. F. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers. Phys. Rev. Lett. 114, 143901 (2015).

    Article  ADS  Google Scholar 

  8. Bendix, P. M., Jauffred, L., Norregaard, K. & Oddershede, L. B. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quantum Electron. 20, 15–26 (2014).

    Google Scholar 

  9. Ruijgrok, P. V. et al. Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107, 037401 (2011).

    Article  ADS  Google Scholar 

  10. Shao, L. et al. Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9, 12542–12551 (2015).

    Article  Google Scholar 

  11. Min, C. et al. Focused plasmonic trapping of metallic particles. Nat. Commun. 4, 2891 (2013).

    Google Scholar 

  12. Babynina, A. et al. Bending gold nanorods with light. Nano. Lett. 16, 6485–6490 (2016).

    Article  ADS  Google Scholar 

  13. Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Article  Google Scholar 

  14. Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    Article  Google Scholar 

  15. Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotech. 11, 53–59 (2016).

    Article  ADS  Google Scholar 

  16. Braun, M. & Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7, 11200–11208 (2013).

    Article  Google Scholar 

  17. Braun, M. et al. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano. Lett. 15, 5499–5505 (2015).

    Article  ADS  Google Scholar 

  18. Flores-Flores, E. et al. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis. Biomed. Opt. Express 6, 4079–4087 (2015).

    Article  Google Scholar 

  19. Chen, J. et al. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 6, 35814 (2016).

    Article  ADS  Google Scholar 

  20. Lin, L. et al. Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659–9668 (2016).

    Article  Google Scholar 

  21. Nikoobakht, B. & El-Sayed, M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17, 6368–6374 (2001).

    Article  Google Scholar 

  22. Smith, D. K. & Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24, 644–649 (2008).

    Article  Google Scholar 

  23. Tadros, T. F. Applied Surfactants: Principles and Applications Ch. 3 (Wiley-VCH, Weinheim, Germany, 2005).

  24. Reichl, M., Herzog, M., Götz, A. & Braun, D. Why charged molecules move across a temperature gradient: the role of electric fields. Phys. Rev. Lett. 112, 198101 (2014).

    Article  ADS  Google Scholar 

  25. Majee, A. & Würger, A. Charging of heated colloidal particles using the electrolyte Seebeck effect. Phys. Rev. Lett. 108, 118301 (2012).

    Article  ADS  Google Scholar 

  26. Zheng, Y. et al. Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps. Nano. Lett. 14, 2971–2976 (2014).

    Article  ADS  Google Scholar 

  27. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photon. 2, 365–370 (2008).

    Article  ADS  Google Scholar 

  28. Amos, D. A., Markels, J. H., Lynn, S. & Radke, C. J. Osmotic pressure and interparticle interactions in ionic micellar surfactant solutions. J. Phys. Chem. B 102, 2739–2753 (1998).

    Article  Google Scholar 

  29. Vigolo, D., Buzzaccaro, S. & Piazza, R. Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26, 7792–7801 (2010).

    Article  Google Scholar 

  30. Würger, A. Hydrodynamic boundary effects on thermophoresis of confined colloids. Phys. Rev. Lett. 116, 138302 (2016).

    Article  ADS  Google Scholar 

  31. Prikulis, J. et al. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano. Lett. 4, 115–118 (2004).

    Article  ADS  Google Scholar 

  32. Demergis, V. & Florin, E.-L. Ultrastrong optical binding of metallic nanoparticles. Nano. Lett. 12, 5756–5760 (2012).

    Article  ADS  Google Scholar 

  33. Iracki, T. D., Beltran-Villegas, D. J., Eichmann, S. L. & Bevan, M. A. Charged micelle depletion attraction and interfacial colloidal phase behavior. Langmuir 26, 18710–18717 (2010).

    Article  Google Scholar 

  34. Ohlinger, A., Nedev, S., Lutich, A. A. & Feldmann, J. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano. Lett. 11, 1770–1774 (2011).

    Article  ADS  Google Scholar 

  35. Tong, L., Miljković, V. D., Johansson, P. & Käll, M. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano. Lett. 11, 4505–4508 (2011).

    Article  ADS  Google Scholar 

  36. Blattmann, M. & Rohrbach, A. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano. Lett. 15, 7816–7821 (2015).

    Article  ADS  Google Scholar 

  37. Scarabelli, L. et al. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8, 5833–5842 (2014).

    Article  Google Scholar 

  38. Coskun, S., Aksoy, B. & Unalan, H. E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 11, 4963–4969 (2011).

    Article  Google Scholar 

  39. Bartsch, T. F. et al. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution. Nat. Commun. 7, 12729 (2016).

    Article  ADS  Google Scholar 

  40. Pralle, A., Florin, E. L., Stelzer, E. H. K. & Hörber, J. K. H. Local viscosity probed by photonic force microscopy. Appl. Phys. A 66, S71–S73 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges the financial supports of the Beckman Young Investigator Program, the Army Research Office (W911NF-17-1-0561), the National Aeronautics and Space Administration Early Career Faculty Award (80NSSC17K0520) and the National Institute of General Medical Sciences of the National Institutes of Health (DP2GM128446). E.-L.F. acknowledges the financial support of the National Science Foundation (DMR-1310559 and DMR-1710646). B.A.K. and E.A. acknowledge the financial supports of the Robert A. Welch Foundation (F-1464) and the National Science Foundation (EFMA-1346647). We also thank the Texas Advanced Computing Centre at The University of Texas at Austin (http://www.tacc.utexas.edu) for providing HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and Y.Z. conceived the idea. L.L., M.W. and X.P. prepared the materials, worked on the trapping experiments and collected the data. E.N.L., X.P. and E.-L.F. worked on the measurements of trapping stiffness. Z.M. conducted the computational fluid dynamic simulations. L.L. conducted finite-difference time-domain simulations. L.S. and L.M.L.-M. synthesized the AuNTs. E.A., S.C., H.E.U. and B.A.K. synthesized the AgNWs. Y.Z. supervised the project. All authors participated in the discussion of the results and wrote the manuscript.

Corresponding author

Correspondence to Yuebing Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Supplementary Notes.

Supplementary Video 1

Real-time trapping, dynamic transport and release of a single 100-nm Ag nanosphere (AgNS).

Supplementary Video 2

Parallel trapping of six 100-nm AgNSs in a circle.

Supplementary Video 3

Trapping and rotation of a single Ag nanowire (AgNW).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Wang, M., Peng, X. et al. Opto-thermoelectric nanotweezers. Nature Photon 12, 195–201 (2018). https://doi.org/10.1038/s41566-018-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0134-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing