Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography

  • Nature Photonicsvolume 12pages228234 (2018)
  • doi:10.1038/s41566-018-0113-8
  • Download Citation


Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of ~80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.

  • Subscribe to Nature Photonics for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Reid, D. T. et al. Roadmap on ultrafast optics. J. Opt. 18, 093006 (2016).

  2. 2.

    Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science and Business Media, New York, 2012).

  3. 3.

    Broaddus, D. H., Foster, M. A., Kuzucu, O., Koch, K. W. & Gaeta, A. L. Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach. In Conference on Lasers and Electro-Optics CMK6 (Optical Society of America, 2010).

  4. 4.

    Bowlan, P. et al. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 14, 11892–11900 (2006).

  5. 5.

    Alonso, B. et al. Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams. J. Opt. Soc. Am. B. 27, 933–940 (2010).

  6. 6.

    Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 341–351 (2017).

  7. 7.

    Rhodes, M., Steinmeyer, G. & Trebino, R. Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry. Appl. Opt. 53, D1–D11 (2014).

  8. 8.

    Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).

  9. 9.

    Wong, T. C., Rhodes, M. & Trebino, R. Single-shot measurement of the complete temporal intensity and phase of supercontinuum. Optica 1, 119–124 (2014).

  10. 10.

    Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

  11. 11.

    Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).

  12. 12.

    Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun 7, 13675 (2016).

  13. 13.

    Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

  14. 14.

    Ryczkowski, P. et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photon. (2018).

  15. 15.

    Picozzi, A. Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt. Express 15, 9063–9083 (2007).

  16. 16.

    Turitsyna, E. G. et al. The laminar-turbulent transition in a fibre laser. Nat. Photon. 7, 783–786 (2013).

  17. 17.

    Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

  18. 18.

    Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

  19. 19.

    Bennett, C. & Kolner, B. Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms. Opt. Lett. 24, 783–785 (1999).

  20. 20.

    Salem, R., Foster, M. A. & Gaeta, A. L. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photon. 5, 274–317 (2013).

  21. 21.

    Kauffman, M., Banyai, W., Godil, A. & Bloom, D. Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994).

  22. 22.

    Dorrer, C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning. Opt. Lett. 31, 540–542 (2006).

  23. 23.

    Dorrer, C. Electric field measurement of optical waveforms. US patent 7,411,683 (2008);

  24. 24.

    Kosik, E. M., Radunsky, A. S., Walmsley, I. A. & Dorrer, C. Interferometric technique for measuring broadband ultrashort pulses at the sampling limit. Opt. Lett. 30, 326–328 (2005).

  25. 25.

    Wyatt, A. S., Walmsley, I. A., Stibenz, G. & Steinmeyer, G. Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction. Opt. Lett. 31, 1914–1916 (2006).

  26. 26.

    Kreis, T. Digital holographic interference-phase measurement using the Fourier-transform method. J. Opt. Soc. Am. A 3, 847–855 (1986).

  27. 27.

    Walczak, P., Randoux, S. & Suret, P. Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114, 143903 (2015).

  28. 28.

    Agafontsev, D. & Zakharov, V. E. Integrable turbulence and formation of rogue waves. Nonlinearity 28, 2791 (2015).

  29. 29.

    Soto-Crespo, J. M., Devine, N. & Akhmediev, N. Integrable turbulence and rogue waves: Breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016).

  30. 30.

    Randoux, S., Gustave, F., Suret, P. & El, G. Optical random riemann waves in integrable turbulence. Phys. Rev. Lett. 118, 233901 (2017).

  31. 31.

    Zakharov, V. E. Turbulence in integrable systems. Stud. Appl. Math. 122, 219–234 (2009).

  32. 32.

    Akhmediev, N., Ankiewicz, A. & Taki, M. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009).

  33. 33.

    Akhmediev, N., Soto-Crespo, J. SpringerAmpamp; Ankiewicz, A. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).

  34. 34.

    Bertola, M. & Tovbis, A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé i. Comm. Pure Appl. Math. 66, 678–752 (2013).

  35. 35.

    Kibler, B. et al. The peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010).

  36. 36.

    Tsang, M., Psaltis, D. & Omenetto, F. G. Reverse propagation of femtosecond pulses in optical fibers. Opt. Lett. 28, 1873–1875 (2003).

  37. 37.

    Barsi, C., Wan, W. & Fleischer, J. W. Imaging through nonlinear media using digital holography. Nat. Photon. 3, 211–215 (2009).

  38. 38.

    Agrawal, G. P. Nonlinear Fiber Optics: Optics and Photonics 3rd edn (Academic Press, San Diego, 2001).

  39. 39.

    Tikan, A. et al. Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation. Phys. Rev. Lett. 119, 033901 (2017).

  40. 40.

    Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Science and Business Media, Berlin, 2005).

  41. 41.

    Backus, S., Durfee, C. G. III, Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).

  42. 42.

    Bennett, C. V. Parametric Temporal Imaging and Aberration Analysis. PhD thesis, Univ. California (2000).

  43. 43.

    Bennett, C. V. & Kolner, B. H. Aberrations in temporal imaging. IEEE J. Quantum Electron. 37, 20–32 (2001).

  44. 44.

    Dorrer, C. et al. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1644–1646 (1999).

  45. 45.

    Hirasawa, M. et al. Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses. Appl. Phys. B 74, s225–s229 (2002).

  46. 46.

    Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

  47. 47.

    Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014).

  48. 48.

    Toenger, S. et al. Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci. Rep. 5, 10380 (2015).

  49. 49.

    Mussot, A. et al. Observation of extreme temporal events in CW-pumped supercontinuum. Opt. Express 17, 17010–17015 (2009).

  50. 50.

    Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

Download references


This work has been partially supported by the Agence Nationale de la Recherche through the LABEX CEMPI project (ANR-11-LABX-0007) and by the Ministry of Higher Education and Research, Hauts-de-France Regional Council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Région (CPER Photonics for Society P4S) and by the Centre National de la Recherche Scientifique (CNRS) through the project MICRO TURBU. The authors thank A. Mussot, the photonics group of the PhLAM and P. Szriftgiser for fruitful discussions and technical help. The authors also acknowledge MENLO for providing the femtosecond laser used for the time-holography measurements. The authors thank N. Savoia for the everyday work on the femto laser and R. El Koussaifi, C. Evain and M. Le Parquier for their crucial contribution in the development of the time lens.

Author information


  1. Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523, Université de Lille, Villeneuve-d’Ascq, France

    • Alexey Tikan
    • , Serge Bielawski
    • , Christophe Szwaj
    • , Stéphane Randoux
    •  & Pierre Suret
  2. Centre d’Etudes et de Recherches Lasers et Applications (CERLA), Villeneuve-d’Ascq, France

    • Alexey Tikan
    • , Serge Bielawski
    • , Christophe Szwaj
    • , Stéphane Randoux
    •  & Pierre Suret


  1. Search for Alexey Tikan in:

  2. Search for Serge Bielawski in:

  3. Search for Christophe Szwaj in:

  4. Search for Stéphane Randoux in:

  5. Search for Pierre Suret in:


All authors contributed to the design and the realization of the heterodyne time microscope and time-holography devices. All the authors participated in the data acquisition that has been essentially performed by A.T. All authors participated in data analysis, numerical simulations and have written the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Pierre Suret.

Supplementary information

  1. Supplementary Information

    This file includes a comparison between conventional time-lens and digital holography, and the comparison between numerical simulations, SEAHORSE and HTM.

  2. Supplementary Video 1

    This video shows experimental recordings of partially coherent light at fibre input and output of a 400-m-long polarization-maintaining fibre.

  3. Supplementary Video 2

    This video shows double pulse signal retrieval using the digital holography algorithm.