Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chalcogenide glass-on-graphene photonics

A Publisher Correction to this article was published on 16 November 2017

This article has been updated

Abstract

Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light–matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 16 November 2017

    In the version of this Article originally published online, the following statement for the equally contributing authors was missing: “Hongtao Lin, Yi Song, Yizhong Huang and Derek Kita contributed equally to this work.” This has now been corrected in all versions of the Article.

References

  1. 1.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Xia, F., Mueller, T., Lin, Y.-m, Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotech. 4, 839–843 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  7. 7.

    Grigorenko, A., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Li, H., Anugrah, Y., Koester, S. J. & Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1, 781–784 (2014).

    Article  Google Scholar 

  12. 12.

    Hu, Y. et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photon. Rev. 10, 307–316 (2016).

    Article  Google Scholar 

  13. 13.

    Nyakiti, L. et al. Enabling graphene-based technologies: toward wafer-scale production of epitaxial graphene. MRS Bull. 37, 1149–1157 (2012).

    Article  Google Scholar 

  14. 14.

    Huang, C.-C. et al. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature. Nanoscale 6, 12792–12797 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015).

    Article  Google Scholar 

  16. 16.

    Colombo, L., Wallace, R. M. & Ruoff, R. S. Graphene growth and device integration. Proc. IEEE 101, 1536–1556 (2013).

    Article  Google Scholar 

  17. 17.

    Lee, B. et al. Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. Appl. Phys. Lett. 97, 043107 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Williams, J., DiCarlo, L. & Marcus, C. Quantum Hall effect in a gate-controlled pn junction of graphene. Science 317, 638–641 (2007).

    ADS  Article  Google Scholar 

  19. 19.

    Wang, X., Tabakman, S. M. & Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).

    Article  Google Scholar 

  20. 20.

    Zheng, L. et al. Improvement of Al2O3 films on graphene grown by atomic layer deposition with pre-H2O treatment. ACS Appl. Mater. Inter. 6, 7014–7019 (2014).

    Article  Google Scholar 

  21. 21.

    Zhu, W., Neumayer, D., Perebeinos, V. & Avouris, P. Silicon nitride gate dielectrics and band gap engineering in graphene layers. Nano Lett. 10, 3572–3576 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Kleinert, M. et al. Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform. Opt. Mater. Express 6, 1800–1807 (2016).

    Article  Google Scholar 

  23. 23.

    Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Ta’eed, V. G. et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15, 9205–9221 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307–2314 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    Childres, I., Jauregui, L. A., Park, W., Cao, H. & Chen, Y. P. in New Developments in Photon and Materials Research (ed. Jang, J. I.) Ch. 19 (Nova Science, New York, 2013).

  28. 28.

    Yang, M., Feng, Y. & Wang, S. in Graphene Science Handbook: Electrical and Optical Properties (ed. Aliofkhazraei, M. et al.) 15–24 (CRC Press, Boca Raton, 2016).

  29. 29.

    Zou, Y. et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic–organic hybrid photonic integration. Adv. Opt. Mater. 2, 759–764 (2014).

    Article  Google Scholar 

  30. 30.

    Kwon, M.-S. Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photon. J. 6, 6100309 (2014).

    Article  Google Scholar 

  31. 31.

    Quan, Q., Deotare, P. B. & Loncar, M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Yu, L., Yin, Y., Shi, Y., Dai, D. & He, S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica 3, 159–166 (2016).

    Article  Google Scholar 

  33. 33.

    Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38, 733–735 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Graham, M. W., Shi, S. F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    Article  Google Scholar 

  36. 36.

    Chen, J. H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008).

    Article  Google Scholar 

  37. 37.

    Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photon. 7, 888–891 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Wang, J. et al. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 8, 13206–13211 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Goniszewski, S. et al. Correlation of p-doping in CVD graphene with substrate surface charges. Sci. Rep. 6, 22858 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Zou, Y. et al. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv. Opt. Mater. 2, 478–486 (2014).

    Article  Google Scholar 

  43. 43.

    Mohsin, M. et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express 22, 15292–15297 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Ye, C., Khan, S., Li, Z. R., Simsek, E. & Sorger, V. J. λ-size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quant. 20, 40–49 (2014).

    Article  Google Scholar 

  45. 45.

    Phare, C. T., Lee, Y.-H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Dalir, H., Xia, Y., Wang, Y. & Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photon. 3, 1564–1568 (2016).

    Article  Google Scholar 

  47. 47.

    Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Emani, N. K. et al. Electrical modulation of Fano resonance in plasmonic nanostructures using graphene. Nano Lett. 14, 78–82 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Gao, W. et al. Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett. 13, 3698–3702 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    ADS  Article  Google Scholar 

  51. 51.

    Hong, J. Y. et al. A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 28, 2382–2392 (2016).

    Article  Google Scholar 

  52. 52.

    Musgraves, J. et al. Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques. Acta Materialia 59, 5032–5039 (2011).

    Article  Google Scholar 

  53. 53.

    Petit, L. et al. Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses. J. Solid State Chem. 182, 2756–2761 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Du, Q. et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Opt. Lett. 41, 3090–3093 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Han, Z. et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors. Appl. Phys. Lett. 109, 071111 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L.C. Kimerling and A. Agarwal for providing access to device measurement facilities, Q. Du, P.-c. Shen, W.S. Leong, J. Michon and Y. Zou for assistance with device processing and characterization and M. Mondol for technical support with electron-beam lithography. Funding support is provided by the National Science Foundation under award nos. 1453218, 1506605 and 1509197. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. 1122374. R.-J.S. and D.E. gratefully acknowledge funding support by the the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences underaward no. DE-SC0001088. C.-C.H. and D.H. were funded in part through the Future Photonics Manufacturing Hub (EPSRC EP/N00762X/1). The authors also acknowledge fabrication facility support by the MIT Microsystems Technology Laboratories and the Harvard University Center for Nanoscale Systems, the latter of which is supported by the National Science Foundation under award no. 0335765.

Author information

Affiliations

Authors

Contributions

H.L. conceived the device designs and carried out device fabrication and testing. Y.S. prepared and characterized the 2D materials. Y.H. characterized the polarizer and thermo-optic switch devices. D.K. constructed the mid-infrared testing system and measured the detector and modulator devices. S.D.-J. prepared the black phosphorus and InSe samples and performed Raman and passivation tests. K.W. performed numerical modelling of the thermo-optic switch. J.L. and H.Z. deposited the ChG films. S.D.-J., L.L. and Z.L. contributed to device characterization. S.N. and A.Y. synthesized the ChG materials. H.W. and C.-C.H. assisted with 2D material preparation. R.-J.S. assisted in detector design and performed detector device modelling. J.H., T.G., J.K., K.R., D.E. and D.H. supervised and coordinated the research. All authors contributed to technical discussions and writing the paper.

Corresponding authors

Correspondence to Hongtao Lin or Juejun Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41566-017-0066-3.

Electronic supplementary material

Supplementary Information

Supplementary information, tables and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Song, Y., Huang, Y. et al. Chalcogenide glass-on-graphene photonics. Nature Photon 11, 798–805 (2017). https://doi.org/10.1038/s41566-017-0033-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing