Review Article | Published:

Non-Hermitian photonics based on parity–time symmetry

Nature Photonicsvolume 11pages752762 (2017) | Download Citation

Abstract

Nearly one century after the birth of quantum mechanics, parity–time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity–time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

  2. 2.

    Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

  3. 3.

    Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996).

  4. 4.

    El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

  5. 5.

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

  6. 6.

    Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008).

  7. 7.

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

  8. 8.

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

  9. 9.

    Ruschhaupt, A., Delgado, F. & Muga, J. G. Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. Math. Gen. 38, L171–L176 (2005).

  10. 10.

    Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

  11. 11.

    Kottos, T. Broken symmetry makes light work. Nat. Phys. 6, 166–167 (2010).

  12. 12.

    Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009).

  13. 13.

    Lee, Y.-C., Hsieh, M.-H., Flammia, S. T. & Lee, R.-K. Local PT symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014).

  14. 14.

    Bender, C. M. PT symmetry in quantum physics: from a mathematical curiosity to optical experiments. Europhys. News 47, 17–20 (2016).

  15. 15.

    Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010).

  16. 16.

    Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2011).

  17. 17.

    Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

  18. 18.

    Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

  19. 19.

    Mostafazadeh, A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102, 220402 (2009).

  20. 20.

    Longhi, S. Optical realization of relativistic non-Hermitian quantum mechanics. Phys. Rev. Lett. 105, 013903 (2010).

  21. 21.

    Heiss, W. D. Exceptional points of non-Hermitian operators. J. Phys. Math. Gen. 37, 2455–2464 (2004).

  22. 22.

    Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

  23. 23.

    Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

  24. 24.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

  25. 25.

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975–978 (2014).

  26. 26.

    Lawrence, M. et al. Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. Phys. Rev. Lett. 113, 093901 (2014).

  27. 27.

    Xu, Y.-L. et al. Experimental realization of Bloch oscillations in a parity–time synthetic silicon photonic lattice. Nat. Commun. 7, 11319 (2016).

  28. 28.

    Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

  29. 29.

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

  30. 30.

    Zhao, H. et al. Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett. 117, 193901 (2016).

  31. 31.

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity–time symmetry breaking. Science 346, 972–975 (2014).

  32. 32.

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

  33. 33.

    Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801 (2010).

  34. 34.

    Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

  35. 35.

    Ge, L., Chong, Y. D. & Stone, A. D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A 85, 023802 (2012).

  36. 36.

    Ambichl, P. et al. Breaking of PT-symmetry in bounded and unbounded scattering systems. Phys. Rev. X 3, 041030 (2013).

  37. 37.

    Ge, L., Makris, K. G., Christodoulides, D. N. & Feng, L. Scattering in PT- and RT-symmetric multimode waveguides: generalized conservation laws and spontaneous symmetry breaking beyond one dimension. Phys. Rev. A 92, 062135 (2015).

  38. 38.

    Ge, L. & Feng, L. Optical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering PT-symmetry breaking. Phys. Rev. A 94, 043836 (2016).

  39. 39.

    Schomerus, H. Quantum noise and self-sustained radiation of PT-symmetric systems. Phys. Rev. Lett. 104, 233601 (2010).

  40. 40.

    Kang, M., Liu, F. & Li, J. Effective spontaneous PT-symmetry breaking in hybridized metamaterials. Phys. Rev. A 87, 053824 (2013).

  41. 41.

    Ge, L. & Türeci, H. E. Antisymmetric PT-photonic structures with balanced positive- and negative-index materials. Phys. Rev. A 88, 053810 (2013).

  42. 42.

    Petermann, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quant. Electron. 15, 566–570 (1979).

  43. 43.

    Berry, M. V. Mode degeneracies and the Petermann excess-noise factor for unstable lasers. J. Mod. Opt. 50, 63–81 (2003).

  44. 44.

    Zhao, H., Longhi, S. & Feng, L. Robust light state by quantum phase transition in non-Hermitian optical materials. Sci. Rep. 5, 17022 (2015).

  45. 45.

    Longhi, S. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009).

  46. 46.

    Wimmer, M., Miri, M.-A., Christodoulides, D. & Peschel, U. Observation of Bloch oscillations in complex PT-symmetric photonic lattices. Sci. Rep. 5, 17760 (2015).

  47. 47.

    Driben, R. & Malomed, B. A. Stability of solitons in parity–time-symmetric couplers. Opt. Lett. 36, 4323–4325 (2011).

  48. 48.

    Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015).

  49. 49.

    Sarma, A. K., Miri, M.-A., Musslimani, Z. H. & Christodoulides, D. N. Continuous and discrete Schrödinger systems with parity–time-symmetric nonlinearities. Phys. Rev. E 89, 052918 (2014).

  50. 50.

    Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Nonlinearly induced PT transition in photonic systems. Phys. Rev. Lett. 111, 263901 (2013).

  51. 51.

    Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christodoulides, D. N. Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators. Phys. Rev. A 92, 063807 (2015).

  52. 52.

    Walasik, W. & Litchinitser, N. M. Phase transition in multimode nonlinear parity–time-symmetric waveguide couplers. Sci. Rep. 6, 19826 (2016).

  53. 53.

    Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity–time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).

  54. 54.

    Ge, L. Anomalous parity–time-symmetry transition away from an exceptional point. Phys. Rev. A 94, 013837 (2016).

  55. 55.

    Ramezani, H., Kottos, T., El-Ganainy, R. & Christodoulides, D. N. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803 (2010).

  56. 56.

    Ge, L., Chong, Y. D., Rotter, S., Türeci, H. E. & Stone, A. D. Unconventional modes in lasers with spatially varying gain and loss. Phys. Rev. A 84, 023820 (2011).

  57. 57.

    Ge, L. Parity–time symmetry in a flat-band system. Phys. Rev. A 92, 052103 (2015).

  58. 58.

    Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).

  59. 59.

    Longhi, S. Convective and absolute PT-symmetry breaking in tight-binding lattices. Phys. Rev. A 88, 052102 (2013).

  60. 60.

    Ge, L. & Stone, A. D. Parity–time symmetry breaking beyond one dimension: the role of degeneracy. Phys. Rev. X 4, 031011 (2014).

  61. 61.

    El-Ganainy, R., Ge, L., Khajavikhan, M. & Christodoulides, D. N. Supersymmetric laser arrays. Phys. Rev. A 92, 033818 (2015).

  62. 62.

    Teimourpour, M. H., Ge, L., Christodoulides, D. N. & El-Ganainy, R. Non-Hermitian engineering of single mode two dimensional laser arrays. Sci. Rep. 6, 33253 (2016).

  63. 63.

    Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

  64. 64.

    Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).

  65. 65.

    Gu, Z. et al. Experimental demonstration of PT-symmetric stripe lasers: experimental demonstration of PT-symmetric stripe lasers. Laser Photon. Rev. 10, 588–594 (2016).

  66. 66.

    Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

  67. 67.

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

  68. 68.

    Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

  69. 69.

    Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002).

  70. 70.

    Tischler, J. R., Bradley, M. S. & Bulović, V. Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31, 2045–2047 (2006).

  71. 71.

    Hamel, W. A. & Woerdman, J. P. Nonorthogonality of the longitudinal eigenmodes of a laser. Phys. Rev. A 40, 2785–2787 (1989).

  72. 72.

    Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).

  73. 73.

    Longhi, S. Invisibility in PT-symmetric complex crystals. J. Phys. Math. Theor. 44, 485302 (2011).

  74. 74.

    Jones, H. F. Analytic results for a PT-symmetric optical structure. J. Phys. Math. Theor. 45, 135306 (2012).

  75. 75.

    Berry, M. V. Optical lattices with PT symmetry are not transparent. J. Phys. Math. Theor. 41, 244007 (2008).

  76. 76.

    Greenberg, M. & Orenstein, M. Irreversible coupling by use of dissipative optics. Opt. Lett. 29, 451–453 (2004).

  77. 77.

    Kulishov, M., Laniel, J. M., Bélanger, N., Azaña, J. & Plant, D. V. Nonreciprocal waveguide Bragg gratings. Opt. Express 13, 3068–3078 (2005).

  78. 78.

    Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).

  79. 79.

    Yan, Y. & Giebink, N. C. Passive PT symmetry in organic composite films via complex refractive index modulation. Adv. Opt. Mater. 2, 423–427 (2014).

  80. 80.

    Wiersig, J. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A 89, 012119 (2014).

  81. 81.

    Jia, Y., Yan, Y., Kesava, S. V., Gomez, E. D. & Giebink, N. C. Passive parity–time symmetry in organic thin film waveguides. ACS Photon. 2, 319–325 (2015).

  82. 82.

    Hahn, C. et al. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun. 7, 12201 (2016).

  83. 83.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

  84. 84.

    Horsley, S. A. R., Artoni, M. & La Rocca, G. C. Spatial Kramers–Kronig relations and the reflection of waves. Nat. Photon. 9, 436–439 (2015).

  85. 85.

    Longhi, S. Half-spectral unidirectional invisibility in non-Hermitian periodic optical structures. Opt. Lett. 40, 5694–5697 (2015).

  86. 86.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

  87. 87.

    Kharitonov, S. & Brès, C.-S. Isolator-free unidirectional thulium-doped fiber laser. Light Sci. Appl. 4, e340 (2015).

  88. 88.

    Hopkins, B., Poddubny, A. N., Miroshnichenko, A. E. & Kivshar, Y. S. Circular dichroism induced by Fano resonances in planar chiral oligomers: circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photon. Rev. 10, 137–146 (2016).

  89. 89.

    Zhong, Q., Ahmed, A., Dadap, J. I., Osgood, R. M. Jr & El-Ganainy, R. Parametric amplification in quasi-PT symmetric coupled waveguide structures. New J. Phys. 18, 125006 (2016).

  90. 90.

    Fleury, R., Sounas, D. L. & Alù, A. Negative refraction and planar focusing based on parity–time symmetric metasurfaces. Phys. Rev. Lett. 113, 023903 (2014).

  91. 91.

    Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

  92. 92.

    Malzard, S., Poli, C. & Schomerus, H. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity–time symmetry. Phys. Rev. Lett. 115, 200402 (2015).

  93. 93.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

  94. 94.

    Miri, M.-A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).

  95. 95.

    Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).

  96. 96.

    Ge, L. Symmetry-protected zero-mode laser with a tunable spatial profile. Phys. Rev. A 95, 023812 (2017).

  97. 97.

    Longhi, S., Gatti, D. & Della Valle, G. Robust light transport in non-Hermitian photonic lattices. Sci. Rep. 5, 13376 (2015).

  98. 98.

    Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011).

  99. 99.

    Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).

  100. 100.

    Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity–time symmetry. Nat. Commun. 6, 5905 (2015).

Download references

Acknowledgements

L.F. acknowledges support from the Army Research Office (W911NF-15-1-0152), the Army Research Office Young Investigator Research Program (W911NF-16-1-0403) and the National Science Foundation (DMR-1506884 and ECCS-1507312). R.E. acknowledges support from the National Science Foundation (ECCS-1545804). L.G. acknowledges support from the National Science Foundation (DMR-1506987).

Author information

Affiliations

  1. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA

    • Liang Feng
  2. Department of Physics and Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, MI, USA

    • Ramy El-Ganainy
  3. Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

    • Ramy El-Ganainy
  4. Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY, USA

    • Li Ge
  5. The Graduate Center, City University of New York, New York, NY, USA

    • Li Ge

Authors

  1. Search for Liang Feng in:

  2. Search for Ramy El-Ganainy in:

  3. Search for Li Ge in:

Contributions

L.F. led the project. All authors contributed significantly to the preparation of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Liang Feng or Li Ge.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-017-0031-1

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.