Letter

Long lifetimes and effective isolation of ions in optical and electrostatic traps

  • Nature Photonicsvolume 11pages704707 (2017)
  • doi:10.1038/s41566-017-0030-2
  • Download Citation
Received:
Accepted:
Published:

Abstract

Long trapping times, as well as low heating and decoherence rates, essentially isolating individual particles from the environment, are crucial ingredients for controlling these particles on the quantum level1. Here, we demonstrate that optical trapping and isolation of ions can be performed on a level comparable to neutral atoms, boosting their lifetime by three orders of magnitude compared to previous work2,3, and measure an upper bound of the total heating rate. The achieved isolation from the environment opens a path to a novel regime of ultracold interactions of ions and atoms at previously inaccessible collision energies4,5,6 and may permit a novel class of experimental quantum simulations with ions and atoms in a variety of versatile optical trapping geometries7, for example, bichromatic traps or higher-dimensional optical lattices8,9.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

  2. 2.

    Schneider, C., Enderlein, M., Huber, T. & Schaetz, T. Optical trapping of an ion. Nat. Photon. 4, 772–775 (2010).

  3. 3.

    Huber, T., Lambrecht, A., Schmidt, J., Karpa, L. & Schaetz, T. A far-off-resonance optical trap for a Ba+ ion. Nat. Commun. 5, 5587 (2014).

  4. 4.

    Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom–ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012).

  5. 5.

    Krükow, A. et al. Energy scaling of cold atom–atom–ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

  6. 6.

    Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).

  7. 7.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

  8. 8.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  9. 9.

    Schmied, R., Roscilde, T., Murg, V., Porras, D. & Cirac, J. I. Quantum phases of trapped ions in an optical lattice. New J. Phys. 10, 045017 (2008).

  10. 10.

    Schneider, C., Porras, D. & Schaetz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75, 024401 (2012).

  11. 11.

    Tomza, M., Koch, C. P. & Moszynski, R. Cold interactions between anYb+ ion and a Li atom: prospects for sympathetic cooling, radiative association, and Feshbach resonances. Phys. Rev. A 91, 042706 (2015).

  12. 12.

    Krych, M., Skomorowski, W., Pawłowski, F., Moszynski, R. & Idziaszek, Z. Sympathetic cooling of the Ba+ ion by collisions with ultracold Rb atoms: theoretical prospects. Phys. Rev. A 83, 032723 (2011).

  13. 13.

    Côté, R., Kharchenko, V. & Lukin, M. D. Mesoscopic molecular ions in Bose–Einstein condensates. Phys. Rev. Lett. 89, 093001 (2002).

  14. 14.

    Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

  15. 15.

    Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

  16. 16.

    Krych, M. & Idziaszek, Z. Description of ion motion in a Paul trap immersed in a cold atomic gas. Phys. Rev. A 91, 023430 (2015).

  17. 17.

    Nguyên, L. H., Kalev, A., Barrett, M. D. & Englert, B.-G. Micromotion in trapped atom–ion systems. Phys. Rev. A 85, 052718 (2012).

  18. 18.

    Linnet, R. B., Leroux, I. D., Marciante, M., Dantan, A. & Drewsen, M. Pinning an ion with an intracavity optical lattice. Phys. Rev. Lett. 109, 233005 (2012).

  19. 19.

    Karpa, L., Bylinskii, A., Gangloff, D., Cetina, M. & Vuletić, V. Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111, 163002 (2013).

  20. 20.

    Bylinskii, A., Gangloff, D. & Vuletić, V. Tuning friction atom-by-atom in an ion-crystal simulator. Science 348, 1115–1118 (2015).

  21. 21.

    Enderlein, M., Huber, T., Schneider, C. & Schaetz, T. Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109, 233004 (2012).

  22. 22.

    Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

  23. 23.

    Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

  24. 24.

    Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2,041014 (2012).

  25. 25.

    Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015).

  26. 26.

    Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

  27. 27.

    Schneider, C., Enderlein, M., Huber, T., Dürr, S. & Schaetz, T. Influence of static electric fields on an optical ion trap. Phys. Rev. A 85,013422 (2012).

  28. 28.

    Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

  29. 29.

    Mielenz, M. et al. Arrays of individually controlled ions suitable for two-dimensional quantum simulations. Nat. Commun. 7, 11839 (2016).

  30. 30.

    Leschhorn, G., Hasegawa, T. & Schaetz, T. Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition. Appl. Phys. B 108, 159–165 (2012).

  31. 31.

    Siverns, J. D., Simkins, L. R., Weidt, S. & Hensinger, W. K. On the application of radio frequency voltages to ion traps via helical resonators. Appl. Phys. B 107,921–934 (2012).

  32. 32.

    Kalis, H. et al. Motional-mode analysis of trapped ions. Phys. Rev. A 94, 023401 (2016).

  33. 33.

    Berkeland, D., Miller, J., Bergquist, J., Itano, W. & Wineland, D. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025 (1998).

  34. 34.

    Schaetz, T. Trapping ions and atoms optically. J. Phys. B 50, 102001 (2017).

  35. 35.

    NIST atomic spectra database http://www.nist.gov/pml/data/asd.cfm (NIST, 2016).

  36. 36.

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys 42,95–170 (2000).

  37. 37.

    Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22,209–212 (1927).

  38. 38.

    Cormick, C., Schaetz, T. & Morigi, G. Trapping ions with lasers. New J. Phys. 13, 043019 (2011).

  39. 39.

    Knünz, S. et al. Sub-millikelvin spatial thermometry of a single Doppler-cooled ion in a Paul trap. Phys. Rev. A 85, 023427 (2012).

  40. 40.

    Schmid, S., Härter, A. & Hecker Denschlag, J. Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

  41. 41.

    Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

Download references

Acknowledgements

The authors thank J. Denter for technical support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648330). A.L., J.S., P.W. and M.D. acknowledge support from the DFG within the GRK 2079/1 programme. P.W. acknowledges support from the Studienstiftung des deutschen Volkes. L.K. acknowledges financial support from Marie Curie Actions.

Author information

Affiliations

  1. Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104, Freiburg, Germany

    • Alexander Lambrecht
    • , Julian Schmidt
    • , Pascal Weckesser
    • , Markus Debatin
    • , Leon Karpa
    •  & Tobias Schaetz
  2. Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany

    • Leon Karpa

Authors

  1. Search for Alexander Lambrecht in:

  2. Search for Julian Schmidt in:

  3. Search for Pascal Weckesser in:

  4. Search for Markus Debatin in:

  5. Search for Leon Karpa in:

  6. Search for Tobias Schaetz in:

Contributions

T.S. conceived the experiment. A.L., J.S. and L.K. contributed equally to the design, construction, carrying out of the experiments, discussion of the results and analysis of the data. All authors contributed to discussing the results and writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Leon Karpa.