Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals

Abstract

The ability to cool and manipulate levitated nanoparticles in vacuum is a promising tool for exploring macroscopic quantum mechanics1,2, precision measurements of forces3 and non-equilibrium thermodynamics4,5. The extreme isolation afforded by optical levitation offers a low-noise, undamped environment that has been used to measure zeptonewton forces3 and radiation pressure shot noise6, and to demonstrate centre-of-mass motion cooling7,8. Ground-state cooling and the creation of macroscopic quantum superpositions are now within reach, but control of both the centre of mass and internal temperature is required. While cooling the centre-of-mass motion to micro-kelvin temperatures has now been achieved, the internal temperature has remained at or above room temperature. Here, we realize a nanocryostat by refrigerating levitated Yb3+:YLF nanocrystals to 130 K using anti-Stokes fluorescence cooling, while simultaneously using the optical trapping field to align the crystal to maximize cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental overview.
Fig. 2: Blueshifted fluorescence from Yb3+:YLF nanocrystals in 1,031 nm and 1,064 nm trapping beams.
Fig. 3: Alignment and rotation of levitated Yb3+:YLF particles.
Fig. 4: Power spectral density.

Similar content being viewed by others

References

  1. Yin, Z., Li, T., Zhang, X. & Duan, L. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).

    Article  ADS  Google Scholar 

  2. Wan, C. et al. Free nano-object Ramsey interferometry for large quantum superpositions. Phys. Rev. Lett. 117, 143003 (2016).

    Article  ADS  Google Scholar 

  3. Ranjit, G., Cunningham, M., Casey, K. & Geraci, A. A. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).

    Article  ADS  Google Scholar 

  4. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotech. 9, 358–364 (2014).

    Article  ADS  Google Scholar 

  5. Millen, J., Deesuwan, T., Barker, P. F. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotech. 9, 425–429 (2014).

    Article  ADS  Google Scholar 

  6. Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article  ADS  Google Scholar 

  7. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

    Article  Google Scholar 

  8. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  9. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping of Neutral Atoms (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).

  10. Pringsheim, P. Zwei bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung. Zeitschrift für Physik 57, 739–746 (1929).

    Article  ADS  Google Scholar 

  11. Mungan, C. E., Buchwald, M. I., Edwards, B. C., Epstein, R. I. & Gosnell, T. R. Laser cooling of a solid by 16 K starting from room temperature. Phys. Rev. Lett. 78, 1030–1033 (1997).

    Article  ADS  Google Scholar 

  12. Seletskiy, D. V. et al. Laser cooling of solids to cryogenic temperatures. Nat. Photon. 4, 161–164 (2010).

    ADS  Google Scholar 

  13. Melgaard, S. D., Albrecht, A. R., Hehlen, M. P. & Sheik-Bahae, M. Solid-state optical refrigeration to sub-100 kelvin regime. Sci. Rep. 6, 20380 (2016).

    Article  ADS  Google Scholar 

  14. Epstein, R. I., Buchwald, M. I., Edwards, B. C., Gosnell, T. R. & Mungan, C. E. Observation of laser-induced fluorescent cooling of a solid. Nature 377, 500–503 (1995).

    Article  ADS  Google Scholar 

  15. Roder, P. B., Smith, B. E., Zhou, X., Crane, M. J. & Pauzauskie, P. J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl Acad. Sci. USA 112, 15024–15029 (2015).

    Article  ADS  Google Scholar 

  16. Bensalah, A. et al. Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality. Opt. Mater. 26, 375–383 (2004).

    Article  ADS  Google Scholar 

  17. Sugiyama, A., Katsurayama, M., Anzai, Y. & Tsuboi, T. Spectroscopic properties of Yb doped YLF grown by a vertical bridgman method. J. Alloy. Compd. 408–412, 780–783 (2006).

    Article  Google Scholar 

  18. Seletskiy, D. V. et al. Precise determination of minimum achievable temperature for solid-state optical refrigeration. J. Lumin. 133, 5–9 (2013).

    Article  Google Scholar 

  19. Singer, W., Nieminen, T. A., Gibson, U. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Orientation of optically trapped nonspherical birefringent particles. Phys. Rev. E 73, 021911 (2006).

    Article  ADS  Google Scholar 

  20. Maurice, E., Wade, S. A., Collins, S. F., Monnom, G. & Baxter, G. W. Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber. Appl. Opt. 36, 8264–8269 (1997).

    Article  ADS  Google Scholar 

  21. Collins, S. F. et al. Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation. J. Appl. Phys. 84, 4649–4654 (1998).

    Article  ADS  Google Scholar 

  22. Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).

    Article  ADS  Google Scholar 

  23. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  ADS  Google Scholar 

  24. Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).

    Article  ADS  Google Scholar 

  25. Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nat. Photon. 5, 48–51 (2011).

    Article  ADS  Google Scholar 

  26. Rings, D., Schachoff, R., Selmke, M., Cichos, F. & Kroy, K. Hot Brownian motion. Phys. Rev. Lett. 105, 090604 (2010).

    Article  ADS  Google Scholar 

  27. Blundell, S. & Blundell, C. Concepts in Thermal Physics (Oxford Univ. Press, Oxford, UK, 2006).

  28. Liu, F., Daun, K., Snelling, D. & Smallwood, G. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83, 355–382 (2006).

    Article  ADS  Google Scholar 

  29. Epstein, R. & Sheik-Bahae, M. Optical Refrigeration in Solids: Fundamentals and Overview 1–32 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).

  30. Zhou, X., Smith, B. E., Roder, P. B. & Pauzauskie, P. J. Laser refrigeration of ytterbium-doped sodium-yttrium-fluoride nanowires. Adv. Mater. 28, 8658–8662 (2016).

    Article  Google Scholar 

  31. Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Vamivakas, A. N. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from a UK Engineering and Physical Science Research Council grant (EP/N031105/1). The authors thank G.W. Morley and A.C. Frangeskou for help with scanning electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Contributions

A.T.M.A.R. and P.F.B. conceived and designed the experiment. Both authors performed the experiment, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to P. F. Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Barker, P.F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nature Photon 11, 634–638 (2017). https://doi.org/10.1038/s41566-017-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0005-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing