Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanistic insights into bone remodelling dysregulation by human viral pathogens

Abstract

Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce ‘osteovirology’ as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cross-talk of bone remodelling.
Fig. 2: Pathogenic bone loss and calcifications.
Fig. 3: Inflammatory bone loss induced by arthritogenic alphaviruses.
Fig. 4: Mechanisms of ectopic calcification induced by ZIKV.

Similar content being viewed by others

References

  1. Takayanagi, H. et al. T-Cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Walsh, M. C. et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev. Immunol. 24, 33–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ohlsson, C. & Sjogren, K. Effects of the gut microbiota on bone mass. Trends Endocrinol. Metab. 26, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Baimukhamedov, C., Barskova, T. & Matucci-Cerinic, M. Arthritis after SARS-CoV-2 infection. Lancet Rheumatol. 3, e324–e325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honge, B. L., Hermansen, M. F. & Storgaard, M. Reactive arthritis after COVID-19. BMJ Case Rep. 14, e241375 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sinaei, R. et al. Post SARS-CoV-2 infection reactive arthritis: a brief report of two pediatric cases. Pediatr. Rheumatol. Online J. 19, 89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burt, F. J. et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 17, e107–e117 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Filgueiras, I. S. et al. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl. Trop. Dis. 15, e0009575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al Senaidi, K., Lacson, A., Rebeyka, I. M. & Mackie, A. S. Echocardiographic detection of early myocardial calcification in acute neonatal myocarditis due to Coxsackie virus type B. Pediatr. Cardiol. 30, 862–863 (2009).

    Article  PubMed  Google Scholar 

  10. Harris, E. WHO: concerning spread of dengue, chikungunya in Latin America. JAMA 329, 1341–1341 (2023).

    PubMed  Google Scholar 

  11. Burt, F. J., Rolph, M. S., Rulli, N. E., Mahalingam, S. & Heise, M. T. Chikungunya: a re-emerging virus. Lancet 379, 662–671 (2012).

    Article  PubMed  Google Scholar 

  12. Rodriguez-Morales, A. J. et al. Post-chikungunya chronic inflammatory rheumatism: results from a retrospective follow-up study of 283 adult and child cases in La Virginia, Risaralda, Colombia. F1000Res. 5, 360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med Hyg. 104, 392–399 (2010).

    Article  PubMed  Google Scholar 

  14. Mogami, R. et al. Ultrasonography of hands and wrists in the diagnosis of complications of chikungunya fever. J. Ultrasound Med. 37, 511–520 (2018).

    Article  PubMed  Google Scholar 

  15. Amaral, J. K., Taylor, P. C., Teixeira, M. M., Morrison, T. E. T. & Schoen, R. T. The clinical features, pathogenesis and methotrexate therapy of chronic chikungunya arthritis. Viruses 11, 289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chaaithanya, I. K. et al. HLA class II allele polymorphism in an outbreak of chikungunya fever in Middle Andaman, India. Immunology 140, 202–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Messaoudi, I. et al. Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity. PLoS Negl. Trop. Dis. 7, e2343 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bertolotti, A. et al. Prevalence of chronic chikungunya and associated risks factors in the French West Indies (La Martinique): a prospective cohort study. PLoS Negl. Trop. Dis. 14, e0007327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chow, A. et al. Persistent arthralgia induced by chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203, 149–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Benedetti, F. et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563 (2006).

    Article  PubMed  Google Scholar 

  21. Chen, W. et al. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc. Natl Acad. Sci. USA 111, 6040–6045 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Chen, W. et al. Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89, 581–593 (2015).

    Article  PubMed  Google Scholar 

  23. Chen, W. et al. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat. Microbiol. 2, 1435–1445 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84, 8021–8032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foo, S. S. et al. Role of pentraxin 3 in shaping arthritogenic alphaviral disease: from enhanced viral replication to immunomodulation. PLoS Pathog. 11, e1004649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Her, Z. et al. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J. Immunol. 184, 5903–5913 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Labadie, K. et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Invest. 120, 894–906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan, U. A., Hashimi, S. M., Bakr, M. M., Forwood, M. R. & Morrison, N. A. CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells. J. Cell. Biochem. 117, 382–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Wolf, S. et al. Inhibition of interleukin-1β signaling by anakinra demonstrates a critical role of bone loss in experimental arthritogenic alphavirus infections. Arthritis Rheumatol. 71, 1185–1190 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, X. et al. Interleukin-17 contributes to chikungunya virus-induced disease. mBio 13, e0028922 (2022).

    Article  PubMed  Google Scholar 

  31. Chan, Y.-H. et al. Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol. Med. 11, e10092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lokireddy, S., Vemula, S. & Vadde, R. Connective tissue metabolism in chikungunya patients. Virol. J. 5, 31 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saha, A. et al. Development of nsP2 protease based cell free high throughput screening assay for evaluation of inhibitors against emerging chikungunya virus. Sci. Rep. 8, 10831 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Huits, R. et al. Clinical characteristics and outcomes among travelers with severe dengue: a geosentinel analysis. Ann. Intern. Med. 176, 940–948 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Her, Z. et al. Severity of plasma leakage is associated with high levels of interferon γ-inducible protein 10, hepatocyte growth factor, matrix metalloproteinase 2 (MMP-2), and MMP-9 during dengue virus infection. J. Infect. Dis. 215, 42–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Dengue: clinical presentation. Centers for Disease Control and Prevention https://www.cdc.gov/dengue/healthcare-providers/clinical-presentation.html#:~:text=Severe%20dengue%20is%20defined%20by,impaired%20consciousness%2C%20or%20heart%20impairment (2023).

  37. Zambrano, L. I. et al. Assessment of post-dengue rheumatic symptoms using the WOMAC and DAS-28 questionnaires in a Honduran population after a four-month follow-up. Trop. Med. Infect. Dis. 7, 394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Friberg, H. et al. Protective versus pathologic pre-exposure cytokine profiles in dengue virus infection. PLoS Negl. Trop. Dis. 12, e0006975 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, K. L. et al. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 7, e36435 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Pascapurnama, D. N. et al. Induction of osteopontin by dengue virus-3 infection in THP-1 cells: inhibition of the synthesis by brefelamide and its derivative. Front. Microbiol. 8, 521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lund, S. A., Giachelli, C. M. & Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal. 3, 311–322 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076–1093 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang, Y. L. et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J. Mol. Med. 94, 1025–1037 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, M. F. et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood 121, 95–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Tseng, H.-W., Samuel, S. G., Schroder, K., Lévesque, J.-P. & Alexander, K. A. Inflammasomes and the IL-1 family in bone homeostasis and disease. Curr. Osteoporos. Rep. 20, 170–185 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, J. Y. & Roehrl, M. H. Glycosaminoglycans are a potential cause of rheumatoid arthritis. Proc. Natl Acad. Sci. USA 99, 14362–14367 (2002).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Avirutnan, P. et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog. 3, e183 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ambrose, J. H., Sekaran, S. D. & Azizan, A. Dengue virus NS1 protein as a diagnostic marker: commercially available ELISA and comparison to qRT-PCR and serological diagnostic assays currently used by the state of Florida. J. Trop. Med. 2017, 8072491 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Beatty, P. R. et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 7, 304ra141 (2015).

    Article  PubMed  Google Scholar 

  51. Benfrid, S. et al. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep. 23, e53600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fattahi, M. J. & Mirshafiey, A. Prostaglandins and rheumatoid arthritis. Arthritis 2012, 239310 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramos-Casals, M., Brito-Zerón, P. & Mariette, X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol. 17, 315–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramani, S. L. et al. Musculoskeletal involvement of COVID-19: review of imaging. Skeletal Radiol. 50, 1763–1773 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kottlors, J. et al. Early extrapulmonary prognostic features in chest computed tomography in COVID-19 pneumonia: bone mineral density is a relevant predictor for the clinical outcome - a multicenter feasibility study. Bone 144, 115790 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Khoja, O. et al. Clinical characteristics and mechanisms of musculoskeletal pain in long COVID. J. Pain. Res. 15, 1729–1748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Foo, S.-S. et al. The systemic inflammatory landscape of COVID-19 in pregnancy: extensive serum proteomic profiling of mother-infant dyads with in utero SARS-CoV-2. Cell Rep. Med. 2, 100453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Disser, N. P. et al. Musculoskeletal consequences of COVID-19. J. Bone Joint Surg. Am. 102, 1197–1204 (2020).

    Article  PubMed  Google Scholar 

  62. Mi, B. et al. SARS-CoV-2-induced overexpression of miR-4485 suppresses osteogenic differentiation and impairs fracture healing. Int J. Biol. Sci. 17, 1277–1288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qiao, W. et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat. Commun. 13, 2539 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021).

  67. Chevrier, S. et al. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep. Med. 2, 100166 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, M. et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 22, 829–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khan, S. et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kappaB pathway. eLife 10, e68563 (2021).

  70. Pan, P. et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat. Commun. 12, 4664 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Chen, I. Y., Moriyama, M., Chang, M. F. & Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol. 10, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu, X. et al. Viral mimicry of interleukin-17A by SARS-CoV-2 ORF8. mBio 13, e0040222 (2022).

    Article  PubMed  Google Scholar 

  73. Carson, D. A. An infectious origin of extraskeletal calcification. Proc. Natl Acad. Sci. USA 95, 7846–7847 (1998).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Chen, W. et al. Zika virus NS3 protease induces bone morphogenetic protein-dependent brain calcification in human fetuses. Nat. Microbiol. 6, 455–466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Katagiri, T. & Watabe, T. Bone morphogenetic proteins. Cold Spring Harb. Perspect. Biol. 8, e021899 (2016).

    Article  Google Scholar 

  76. Brasil, P. et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 375, 2321–2334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yuan, L. et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358, 933–936 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Paixao, E. S. et al. Mortality from congenital Zika syndrome — nationwide cohort study in Brazil. N. Engl. J. Med. 386, 757–767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pool, K. L. et al. Association between neonatal neuroimaging and clinical outcomes in zika-exposed infants from Rio de Janeiro, Brazil. JAMA Netw. Open 2, e198124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Petribu, N. C. L. et al. Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study. Br. Med. J. 359, j4188 (2017).

    Article  Google Scholar 

  81. Proudfoot, D. Calcium signaling and tissue calcification. Cold Spring Harb. Perspect. Biol. 11, a035303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nielsen-Saines, K. et al. Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nat. Med. 25, 1213–1217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferraris, P. et al. Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerg. Microbes Infect. 8, 1003–1016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, J. et al. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. Microbiol. 3, 302–309 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, J. et al. Zika virus infects pericytes in the choroid plexus and enters the central nervous system through the blood-cerebrospinal fluid barrier. PLoS Pathog. 16, e1008204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Speer, M. Y. et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ. Res. 104, 733–741 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Ding, Q. et al. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc. Natl Acad. Sci. USA 115, E6310–E6318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crooks, C. M. et al. African-lineage Zika virus replication dynamics and maternal-fetal interface infection in pregnant rhesus macaques. J. Virol. 95, e0222020 (2021).

    Article  PubMed  Google Scholar 

  89. Centers for Disease Control and Prevention (CDC). Nonpolio enterovirus and human parechovirus surveillance—United States, 2006–2008. MMWR Morb. Mortal. Wkly Rep. 59, 1577–1580 (2010).

  90. Yin, Z. et al. Development of a neonatal mouse model for Coxsackievirus B1 antiviral evaluation. Virol. Sin. 36, 1575–1584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gaaloul, I. et al. Coxsackievirus B detection in cases of myocarditis, myopericarditis, pericarditis and dilated cardiomyopathy in hospitalized patients. Mol. Med. Rep. 10, 2811–2818 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stallion, A., Rafferty, J. F., Warner, B. W., Ziegler, M. M. & Ryckman, F. C. Myocardial calcification: a predictor of poor outcome for myocarditis treated with extracorporeal life support. J. Pediatr. Surg. 29, 492–494 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Bode, M. F. et al. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci. Rep. 11, 14264 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Lee, K. et al. Targeting of the osteoclastogenic RANKL–RANK axis prevents osteoporotic bone loss and soft tissue calcification in Coxsackievirus B3–infected mice. J. Immunol. 190, 1623–1630 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Wan, F. et al. Vγ1+γδT, early cardiac infiltrated innate population dominantly producing IL-4, protect mice against CVB3 myocarditis by modulating IFNγ+ T response. Mol. Immunol. 81, 16–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Opavsky, M. A. et al. Susceptibility to myocarditis is dependent on the response of αβ T lymphocytes to Coxsackieviral infection. Circ. Res. 85, 551–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Dennert, R., Crijns, H. J. & Heymans, S. Acute viral myocarditis. Eur. Heart J. 29, 2073–2082 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chapman, N. & Kim, K.-S. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr. Top. Microbiol Immunol. 323, 275–292 (2008).

    CAS  PubMed  Google Scholar 

  99. Xiong, D. et al. Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: a genetic predisposition to viral heart disease. Nat. Med. 8, 872–877 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Lim, B. K. et al. Inhibition of Coxsackievirus-associated dystrophin cleavage prevents cardiomyopathy. J. Clin. Invest. 123, 5146–5151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, H. S. et al. α-Lipoic acid attenuates coxsackievirus B3-induced ectopic calcification in heart, pancreas, and lung. Biochem. Biophys. Res. Commun. 432, 378–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Hak, A. E., Pols, H. A. P., Hemert, A. M. V., Hofman, A. & Witteman, J. C. M. Progression of aortic calcification is associated with metacarpal bone loss during menopause. Arterioscler. Thromb. Vasc. Biol. 20, 1926–1931 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Reid, I. R. & Billington, E. O. Drug therapy for osteoporosis in older adults. Lancet 399, 1080–1092 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, W. J., Shin, H. L., Kim, B. S., Kim, H. J. & Ryoo, H. M. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp. Mol. Med 52, 1178–1184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Prescott, L. Alphavirus nsP2 protease structure and cleavage prediction: possible relevance to the pathogenesis of viral arthritis. Preprint at bioRxiv https://doi.org/10.1101/2022.01.22.477317 (2022).

  106. Tan, Y. B., Law, M. C. Y. & Luo, D. Targeting the alphavirus virus replication process for antiviral development. Antivir. Res 210, 105494 (2022).

    Article  PubMed  Google Scholar 

  107. Eberle, R. J. et al. Riboflavin, a potent neuroprotective vitamin: focus on flavivirus and alphavirus proteases. Microorganisms 10, 1331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Norshidah, H., Vignesh, R. & Lai, N. S. Updates on dengue vaccine and antiviral: where are we heading? Molecules 26, 6768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Modhiran, N. et al. A broadly protective antibody that targets the flavivirus NS1 protein. Science 371, 190–194 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  110. Nunes, D. Ad. F. et al. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: a systematic review. J. Med. Virol. 94, 442–453 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Zhu, S. et al. Discovery and computational analyses of novel small molecule zika virus inhibitors. Molecules 24, 1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Elong Ngono, A. et al. CD8+ T cells mediate protection against Zika virus induced by an NS3-based vaccine. Sci. Adv. 6, eabb2154 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  113. Wang, Y. et al. The capsid protein VP1 of Coxsackievirus B induces cell cycle arrest by up-regulating heat shock protein 70. Front. Microbiol. 10, 1633 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Alhazmi, A. et al. Combating coxsackievirus B infections. Rev. Med Virol. https://doi.org/10.1002/rmv.2406 (2022).

    Article  PubMed  Google Scholar 

  115. Hulsebosch, B. M. & Mounce, B. C. Polyamine analog diethylnorspermidine restricts coxsackievirus B3 and is overcome by 2A protease mutation in vitro. Viruses 13, 310 (2021).

  116. Baxter, V. K. & Heise, M. T. Genetic control of alphavirus pathogenesis. Mamm. Genome 29, 408–424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Noll, K. E. et al. Complex genetic architecture underlies regulation of influenza-A-virus-specific antibody responses in the collaborative cross. Cell Rep. 31, 107587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Ikebuchi, Y. et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561, 195–200 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  121. Chen, Q. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Q. et al. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front. Cell Dev. Biol. 8, 601224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Uenaka, M. et al. Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat. Commun. 13, 1066 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Vidal, N. O., Brandstrom, H., Jonsson, K. B. & Ohlsson, C. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J. Endocrinol. 159, 191–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Veis, D. J. & O’Brien, C. A. Osteoclasts, master sculptors of bone. Annu Rev. Pathol. 18, 257–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Liang, B., Burley, G., Lin, S. & Shi, Y.-C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell. Mol. Biol. Lett. 27, 72 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Doherty, T. M. et al. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc. Natl Acad. Sci. USA 100, 11201–11206 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  128. Zarb, Y., Franzoso, F. D. & Keller, A. Pericytes in primary familial brain calcification. Adv. Exp. Med Biol. 1147, 247–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Lees-Shepard, J. B. et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat. Commun. 9, 471 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  130. Wancket, L. M. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathol. 52, 842–850 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, R. E. & Diamond, M. S. Dengue mouse models for evaluating pathogenesis and countermeasures. Curr. Opin. Virol. 43, 50–58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Clark, K. B., Onlamoon, N., Hsiao, H.-M., Perng, G. C. & Villinger, F. Can non-human primates serve as models for investigating dengue disease pathogenesis? Front. Microbiol. 4, 305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Awosanya, O. D. et al. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone 154, 116227 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Chu, H., Chan, J. F.-W. & Yuen, K.-Y. Animal models in SARS-CoV-2 research. Nat. Methods 19, 392–394 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Shou, S. et al. Animal models for COVID-19: hamsters, mouse, ferret, mink, tree shrew, and non-human primates. Front. Microbiol. 12, 626553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gorman, M. J. et al. An immunocompetent mouse model of zika virus infection. Cell Host Microbe 23, 672–685.e676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nem de Oliveira Souza, I. et al. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci. Transl. Med. 10, eaar2749 (2018).

    Article  PubMed  Google Scholar 

  138. Haese, N. N. et al. Nonhuman primate models of Zika virus infection and disease during pregnancy. Viruses 13, 2088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Martinot, A. J. et al. Fetal neuropathology in Zika virus-infected pregnant female rhesus monkeys. Cell 173, 1111–1122.e1110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Błyszczuk, P. Myocarditis in humans and in experimental animal models. Front. Cardiovasc. Med. 6, 64 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fairweather, D. & Rose, N. R. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods 41, 118–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stone, V. et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Sci. Adv. 6, eaaz2433 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Skottke, J., Gelinsky, M. & Bernhardt, A. In vitro co-culture model of primary human osteoblasts and osteocytes in collagen gels. Int. J. Mol. Sci. 20, 1998 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Su, X. et al. Human brain organoids as an in vitro model system of viral infectious diseases. Front. Immunol. 12, 792316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Park, Y. et al. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci. Adv. 7, eabd6495 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Wang, T. et al. Single-cell RNA sequencing in orthopedic research. Bone Res. 11, 10 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  148. Debnath, S. & Greenblatt, M. B. Specimen preparation for single-cell sequencing analysis of skeletal cells. Methods Mol. Biol. 2221, 89–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Tilburg, J. et al. Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution. Res Pract. Thromb. Haemost. 7, 100158 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ratnasiri, K., Wilk, A. J., Lee, M. J., Khatri, P. & Blish, C. A. Single-cell RNA-seq methods to interrogate virus-host interactions. Semin. Immunopathol. 45, 71–89 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

W.C. was supported by grants R00DE028573 and R01DE033391 from the National Institute of Dental and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and S.-S.F. contributed to the conceptualization of the manuscript. C.C.S.C., T.A., N.M.M., S.-S.F. and W.C. contributed to writing and revision of the manuscript. C.O., C.M.C., L.H.C., A.V., N.S.P. and M.E.H. contributed with additional text, ideas, edits and approval of the final manuscript.

Corresponding authors

Correspondence to Suan-Sin Foo or Weiqiang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Victoria Baxter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caetano, C.C.S., Azamor, T., Meyer, N.M. et al. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 9, 322–335 (2024). https://doi.org/10.1038/s41564-023-01586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01586-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing