Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Above- and belowground fungal biodiversity of Populus trees on a continental scale

Abstract

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant–microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tree species and sampling locations.
Fig. 2: Fungal taxonomic distributions among sampling compartments and host tree species.
Fig. 3: Patterns of fungal diversity and community structure, and the relationships to climate and soil and gradients.
Fig. 4: Ectomycorrhizal fungal diversity, distribution and climate response.
Fig. 5: Arbuscular mycorrhizal fungal diversity, distribution and climate response.
Fig. 6: PPFE diversity, distribution and climate response.

Similar content being viewed by others

Data availability

All ITS amplicons are archived on the National Center for Biotechnology Information Sequence Read Archive database (BioProject number PRJNA987748) and will be submitted to the GlobalFungi database following publication. The fungal OTU table, ASV table and metadata are archived on Zenodo (https://doi.org/10.5281/zenodo.8062691). The FungalTraits database used for guild assignments is available at https://docs.google.com/spreadsheets/d/1cxImJWMYVTr6uIQXcTLwK1YNNzQvKJJifzzNpKCM6O0/edit?usp=sharing.

Code availability

The bioinformatic code used to process amplicon data is archived on Zenodo (https://doi.org/10.5281/zenodo.8062691).

References

  1. Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Vasar, M. et al. Global soil microbiomes: a new frontline of biome‐ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).

    Article  Google Scholar 

  5. Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 (2021).

    Article  Google Scholar 

  7. Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 9, 243–262 (2015).

    Article  Google Scholar 

  8. Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).

    Article  Google Scholar 

  10. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    Article  CAS  Google Scholar 

  11. Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).

    Article  CAS  Google Scholar 

  12. Wubs, E. J., Van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).

    Article  PubMed  Google Scholar 

  13. Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).

    Article  Google Scholar 

  15. Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meiser, A., Balint, M. & Schmitt, I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol. 201, 623–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article  PubMed  Google Scholar 

  19. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl Acad. Sci. USA 109, 13022–13027 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barge, E. G., Leopold, D. R., Peay, K. G., Newcombe, G. & Busby, P. E. Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa. J. Biogeogr. 46, 2001–2011 (2019).

    Article  Google Scholar 

  22. Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davison, J. et al. Temperature and pH define the realized niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA 111, 6341–6346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).

    Article  PubMed  Google Scholar 

  26. Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Bruns, T. & Taylor, J. Comment on ‘Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism’. Science 351, 826 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).

    Article  PubMed  Google Scholar 

  29. Anagnostakis, S. L. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79, 23–37 (1987).

    Article  Google Scholar 

  30. Mortenson, L. A. et al. Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi ‘a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai‘i Island, USA. For. Ecol. Manag. 377, 83–92 (2016).

    Article  Google Scholar 

  31. Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K. & Prospero, S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20, 131–138 (2012).

    Article  PubMed  Google Scholar 

  32. Marchetti, S. B., Worrall, J. J. & Eager, T. Secondary insects and diseases contribute to sudden aspen decline in southwestern Colorado, USA. Can. J. For. Res. 41, 2315–2325 (2011).

    Article  Google Scholar 

  33. Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).

    Article  Google Scholar 

  34. Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article  Google Scholar 

  35. Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist‐mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).

    Article  PubMed  Google Scholar 

  36. Van Nuland, M. E. & Peay, K. G. Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche. Fungal Ecol. 46, 100960 (2020).

    Article  Google Scholar 

  37. Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. in Biology of Populus and Its Implications for Management and Conservation (eds Stattler, R. F. et al.) 57–85 (NRC Research Press, 1996).

  40. Sannigrahi, P., Ragauskas, A. J. & Tuskan, G. A. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod. Biorefin. 4, 209–226 (2010).

    Article  CAS  Google Scholar 

  41. Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Hacquard, S. & Schadt, C. W. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol. 205, 1424–1430 (2015).

    Article  PubMed  Google Scholar 

  43. Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).

    Article  Google Scholar 

  44. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B 364, 1629–1640 (2009).

    Article  Google Scholar 

  45. Schweitzer, J. A. et al. Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89, 773–781 (2008).

    Article  PubMed  Google Scholar 

  46. Cregger, M. A. et al. Plant–microbe interactions: from genes to ecosystems using Populus as a model system. Phytobiomes J. 5, 29–38 (2021).

    Article  Google Scholar 

  47. Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lamit, L. J., Holeski, L. M., Flores-Renteria, L., Whitham, T. G. & Gehring, C. A. Tree genotype influences ectomycorrhizal fungal community structure: ecological and evolutionary implications. Fungal Ecol. 24, 124–134 (2016).

    Article  Google Scholar 

  49. Leopold, D. R. & Busby, P. E. Host genotype and colonist arrival order jointly govern plant microbiome composition and function. Curr. Biol. 30, 3260–3266 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Lamit, L. J. et al. Ectomycorrhizal fungal communities differ among parental and hybrid Populus cross types within a natural riparian habitat. Fungal Ecol. 52, 101059 (2021).

    Article  Google Scholar 

  51. Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Ware, I. M. et al. Climate-driven divergence in plant–microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Knight, R. et al. Unlocking the potential of metagenomics through replicated experimental design. Nat. Biotechnol. 30, 513–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rudgers, J. A. et al. Biogeography of root‐associated fungi in foundation grasses of North American plains. J. Biogeogr. 49, 22–37 (2022).

    Article  Google Scholar 

  55. Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).

    Article  PubMed  Google Scholar 

  56. Coleman‐Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).

    Article  PubMed  Google Scholar 

  57. De Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hestrin, R., Lee, M. R., Whitaker, B. K. & Pett-Ridge, J. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 5, 14–28 (2021).

    Article  Google Scholar 

  59. Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020).

    Article  PubMed  Google Scholar 

  60. Stopnisek, N. & Shade, A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 15, 2708–2722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article  PubMed  Google Scholar 

  62. Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Shakya, M. et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE 8, e76382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dove, N. C., Klingeman, D. M., Carrell, A. A., Cregger, M. A. & Schadt, C. W. Fire alters plant microbiome assembly patterns: integrating the plant and soil microbial response to disturbance. New Phytol. 230, 2433–2446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Nuland, M. E. et al. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate‐driven range shifts. New Phytol. 232, 762–775 (2021).

    Article  PubMed  Google Scholar 

  66. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nuccio, E. E. et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318 (2016).

    Article  PubMed  Google Scholar 

  68. Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cahill, J. F. Jr., Elle, E., Smith, G. R. & Shore, B. H. Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89, 1791–1801 (2008).

    Article  PubMed  Google Scholar 

  70. Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

    Article  Google Scholar 

  71. Teste, F. P., Jones, M. D. & Dickie, I. A. Dual‐mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).

    Article  PubMed  Google Scholar 

  72. Karst, J. et al. Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza 31, 313–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Hultine, K. R. et al. Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. Conserv. Physiol. 8, coaa061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    Article  PubMed  Google Scholar 

  76. Van Nuland, M. E. et al. Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiol. Ecol. 96, fiaa108 (2020).

    Article  PubMed  Google Scholar 

  77. Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal‐temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).

    Article  Google Scholar 

  78. Callan, B. E. Diseases of Populus in British Columbia: A Diagnostic Manual (Canadian Forest Service, 1998).

  79. Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 135, 575–585 (1997).

    Article  Google Scholar 

  80. Gano-Cohen, K. A. et al. Recurrent mutualism breakdown events in a legume rhizobia metapopulation. Proc. R. Soc. B 287, 20192549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnson, N. C., Wilson, G. W., Bowker, M. A., Wilson, J. A. & Miller, R. M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl Acad. Sci. USA 107, 2093–2098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in plant–soil eco‐evolutionary dynamics across a fertility gradient. Funct. Ecol. 33, 95–106 (2019).

    Article  Google Scholar 

  83. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    Article  PubMed  Google Scholar 

  84. Ware, I. M. et al. Climate‐driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).

    Article  Google Scholar 

  85. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  86. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brown S. P., Leopold D. R., & Busby P. E. Protocols for investigating the leaf mycobiome using high-throughput DNA sequencing. in Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology Vol. 1848 (eds Ma, W. & Wolpert, T.) (Humana, 2018).

  88. Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).

    Article  Google Scholar 

  89. Peay, K. G. et al. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol. Lett. 18, 807–816 (2015).

    Article  PubMed  Google Scholar 

  90. Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T. & Ishii, H. S. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Interface 13, 20151097 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  94. Abarenkov, K. et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 186, 281–285 (2010).

    Article  PubMed  Google Scholar 

  95. Glassman, S. I. & Martiny, J. B. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. MSphere 3, e00148-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).

    Article  Google Scholar 

  97. McLaren, M. mikemc/speedyseq: speedyseq v0.2.0 (version v0.2.0). Zenodo https://doi.org/10.5281/zenodo.3923184 (2020).

  98. Tipton, L., Zahn, G. L., Darcy, J. L., Amend, A. S. & Hynson, N. A. Hawaiian fungal amplicon sequence variants reveal otherwise hidden biogeography. Microb. Ecol. 83, 48–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article  Google Scholar 

  102. Delavaux, C. S. et al. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytol. 229, 3048–3052 (2020).

    Article  PubMed  Google Scholar 

  103. Oksanen, J., et al. vegan: community ecology package. R package version 2.5-7. R Foundation https://CRAN.R-project.org/package=vegan (2020).

  104. Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  105. Fitzpatrick, M., Mokany, K., Manion, G., Nieto-Lugilde, D. & Ferrier, S. gdm: generalized dissimilarity modeling. R package version 1.5.0-3. R Foundation https://CRAN.R-project.org/package=gdm (2022).

  106. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  107. Baker, M. E., King, R. S., & Kahle, D. TITAN2: Threshold Indicator Taxa Analysis. R package version 2.4.1. R Foundation https://CRAN.R-project.org/package=TITAN2 (2020).

Download references

Acknowledgements

We thank members of the Peay Lab for their help processing samples and advising on the preparation of sequencing libraries. This research was funded in part by the US Department of Energy Biological and Environmental Research program award DESC0016097 to K.G.P. This work was also supported by CAREER awards to P.E.B. (NSF 2146552, USDA 2022-67013-37437). K.G.P. is a Canadian Institute For Advanced Research Fellow in the program Fungal Kingdom: Threats and Opportunities.

Author information

Authors and Affiliations

Authors

Contributions

M.E.V.N., S.C.D. and K.G.P. designed the study, with assistance from P.E.B., J.K.B. and J.A.S. on site selection and sampling protocols. M.E.V.N., S.C.D. and K.G.P. performed the field sampling, lab work and fungal amplicon library preparation. M.E.V.N. and S.C.D. performed the bioinformatics and data analysis and wrote the first draft of the manuscript. All co-authors contributed substantial edits to the manuscript.

Corresponding author

Correspondence to Michael E. Van Nuland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Ari Jumpponen, Brajesh Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fungal taxonomic diversity among sampling compartments and host tree species.

Krona charts show the overall fungal taxonomic profile of each plant compartment. Higher taxonomic ranks are located at inner circles moving to family level ranks in outer circles. Expandable versions of these plots for more in-depth examination can be found here: https://mvannuland.github.io/Populus_mycobiome_taxonomy_krona/.

Extended Data Fig. 2 Predicted spatial variation of fungal richness and community turnover across the combined US Populus distribution.

a) Maps show predicted levels of fungal OTU richness based on generalized additive model results projected across a rasterstack of climate and soil variables. b) Maps show predicted gradients of fungal community composition derived by principle component (PC) transformations of climate and soil rasters. The three constituent subplots (representing the first three PC axes) are shown based on their red, green, and blue color scale. Areas with similar colors are expected to have similar fungal communities.

Extended Data Fig. 3 Uncertainty in model projections of fungal responses to climate change.

Maps show per-pixel uncertainty associated with spatial predictions of percent changes in a) ectomycorrhizal fungi (EMF), b) arbuscular mycorrhizal fungi (AMF), and c) foliar pathogen responses to climate change. Uncertainty estimates were calculated as the standard deviation across 17 future climate datasets (2070 RCP8.5) used in spatial predictions based on generalized additive models.

Extended Data Fig. 4 Community-level results of accumulated indicator OTU taxa z-scores.

Cumulative change-point values and distributions of fungal indicator OTUs in each functional guild with negative and positive responses to the environmental gradients. The left axis shows the sum of z-scores from individual indicator OTU taxa plotted as points connected by lines. The right axis shows the cumulative distribution of change points. Peaks in sum(z) points and steep increases in cumulative frequency identify thresholds of fungal community change along environmental gradients. EMF = ectomycorrhizal fungi, AMF = arbuscular mycorrhizal fungi, Pathogen = foliar plant pathogens.

Extended Data Fig. 5 Correlations between measured and predicted (SoilGrids) data.

Correlations show positive relationships between soil organic carbon and organic matter, soil nitrogen, and soil pH.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nuland, M.E., Daws, S.C., Bailey, J.K. et al. Above- and belowground fungal biodiversity of Populus trees on a continental scale. Nat Microbiol 8, 2406–2419 (2023). https://doi.org/10.1038/s41564-023-01514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01514-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing