Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune imprinting and next-generation coronavirus vaccines

Abstract

Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity—a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune responses to influenza virus and SARS-CoV-2 in the context of infection and vaccination.
Fig. 2: Primary exposure to a virus generates a pool of antibodies with both neutralizing and non-neutralizing paratopes.
Fig. 3: The antigenic seniority model, showing the hierarchical nature of imprinting on the antibody responses to SARS-CoV-2 and its variants.
Fig. 4: Germinal centre dynamics of imprinting—distraction, exhaustion and competitive inhibition.

Similar content being viewed by others

References

  1. Global Influenza Surveillance and Response System (GISRS) (WHO, accessed 1 October 2023); https://www.who.int/initiatives/global-influenza-surveillance-and-response-system

  2. Gaymard, A., Le Briand, N., Frobert, E., Lina, B. & Escuret, V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin. Microbiol. Infect. 22, 975–983 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 47–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Telenti, A. et al. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596, 495–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lewnard, J. A. & Cobey, S. Immune history and influenza vaccine effectiveness. Vaccines 6, E28 (2018).

  6. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Henry, C., Palm, A.-K. E., Krammer, F. & Wilson, P. C. From original antigenic sin to the universal influenza virus vaccine. Trends Immunol. 39, 70–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Biswas, A., Chakrabarti, A. K. & Dutta, S. Current challenges: from the path of ‘original antigenic sin’ towards the development of universal flu vaccines. Int. Rev. Immunol. 39, 21–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Yewdell, J. W. & Santos, J. J. S. Original antigenic sin: how original? How sinful? Cold Spring Harb. Perspect. Med. 11, a038786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Piccoli, L. et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 1024–1042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tracking SARS-CoV-2 Variants (WHO, accessed 1 October 2023); https://www.who.int/activities/tracking-SARS-CoV-2-variants

  15. Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldstein, S. A., Brown, J., Pedersen, B. S., Quinlan, A. R. & Elde, N. C. Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biol. Evol.14, evac161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2022).

  20. Chalkias, S. et al. Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results. Nat. Med. 29, 2325–2333 (2023).

  21. Khoury, D. S. et al. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. Nat. Med. 29, 574–578 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Chemaitelly, H. et al. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N. Engl. J. Med. 387, 1716–1718 (2022).

    Article  PubMed  Google Scholar 

  23. Aguilar-Bretones, M., Fouchier, R. A. M., Koopmans, M. P. G. & Nierop, G. Pvan Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J. Clin. Invest. 133, e162192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Offit, P. A. Bivalent COVID-19 vaccines—a cautionary tale. N. Engl. J. Med. 388, 481–483 (2023).

    Article  PubMed  Google Scholar 

  25. Hoehl, S. & Ciesek, S. Recalling ancestral SARS-CoV-2 variants: is it an original sin with benefits? Lancet Infect. Dis. 23, 272–273 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572–578 (1960).

    Google Scholar 

  27. Murray, S. M. et al. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat. Rev. Immunol. 23, 304–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339–1343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajendran, M. et al. Analysis of anti-influenza virus neuraminidase antibodies in children, adults and the elderly by ELISA and enzyme inhibition: evidence for original antigenic sin. mBio 8, e02281-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rothman, A. L. Immunity to Dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Tripp, R. A. & Power, U. F. Original antigenic sin and respiratory syncytial virus vaccines. Vaccines 7, 107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baraniak, I., Kern, F., Holenya, P., Griffiths, P. & Reeves, M. Original antigenic sin shapes the immunological repertoire evoked by human cytomegalovirus glycoprotein B/MF59 vaccine in seropositive recipients. J. Infect. Dis. 220, 228–232 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lessler, J. et al. Evidence for antigenic seniority in influenza A (H3N2) antibody responses in Southern China. PLoS Pathog. 8, e1002802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shrock, E. et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370, eabd4250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woudenberg, T. et al. Humoral immunity to SARS-CoV-2 and seasonal coronaviruses in children and adults in north-eastern France. eBioMedicine 70, 103495 (2021).

  36. Aguilar-Bretones, M. et al. Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. J. Clin. Invest. 131, e150613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McNaughton, A. L. et al. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight 7, e156372 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184, 1858–1864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prévost, J. et al. Cross-sectional evaluation of humoral responses against SARS-CoV-2 spike. Cell Rep. Med. 1, 100126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lv, H. et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 31, 107725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, C.-W. et al. Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N. Engl. J. Med. 385, 1401–1406 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Zar, H. J. et al. Natural and hybrid immunity following four COVID-19 waves: a prospective cohort study of mothers in South Africa. eClinicalMedicine 53, 101655 (2022).

  44. Goel, R. R. et al. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 185, 1875–1887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Röltgen, K. et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185, 1025–1040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaku, C. I. et al. Recall of preexisting cross-reactive B cell memory after Omicron BA.1 breakthrough infection. Sci. Immunol. 7, eabq3511 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Hoffmann, M. et al. Effect of hybrid immunity and bivalent booster vaccination on Omicron sublineage neutralisation. Lancet Infect. Dis. 23, 25–28 (2023).

    Article  PubMed  Google Scholar 

  48. Chu, L. et al. Immune response to SARS-CoV-2 after a booster of mRNA-1273: an open-label phase 2 trial. Nat. Med. 28, 1042–1049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B-cell response in humans. Nature 617, 592–598 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Chalkias, S. et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial. Nat Med 28, 2388–2397 (2022).

  51. Chalkias, S. et al. A bivalent Omicron-containing booster vaccine against COVID-19. N. Engl. J. Med. 387, 1279–1291 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Zou, J. et al. Neutralization of BA.4–BA.5, BA.4.6, BA.2.75.2, BQ.1.1 and XBB.1 with bivalent vaccine. N. Engl. J. Med. 388, 854–857 (2023).

    Article  PubMed  Google Scholar 

  53. Wang, Q. et al. Antibody response to Omicron BA.4–BA.5 bivalent booster. N. Engl. J. Med. 388, 567–569 (2023).

    Article  PubMed  Google Scholar 

  54. Collier, A. Y. et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N. Engl. J. Med. 388, 565–567 (2023).

    Article  PubMed  Google Scholar 

  55. Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N. Engl. J. Med. 388, 183–185 (2023).

    Article  PubMed  Google Scholar 

  56. Statement on the antigen composition of COVID-19 vaccines. WHO (18 May 202); https://www.who.int/news/item/18-05-2023-statement-on-the-antigen-composition-of-covid-19-vaccines

  57. Chalkias, S. et al. Safety and immunogenicity of XBB.1.5-containing mRNA vaccines. Preprint at https://doi.org/10.1101/2023.08.22.23293434 (2023).

  58. Pfizer and BioNTech receive positive CHMP opinion for Omicron XBB.1.5-adapted COVID-19 vaccine in the European Union. Pfizer (30 August 2023); https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-receive-positive-chmp-opinion-omicron-2

  59. Jones-Gray, E., Robinson, E. J., Kucharski, A. J., Fox, A. & Sullivan, S. G. Does repeated influenza vaccination attenuate effectiveness? A systematic review and meta-analysis. Lancet Resp. Med. 11, 27–44 (2023).

    Article  CAS  Google Scholar 

  60. Gostic, K. M. et al. Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. PLoS Pathog. 15, e1008109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Petrie, J. G. et al. Antibodies against the current influenza A(H1N1) vaccine strain do not protect some individuals from infection with contemporary circulating influenza A(H1N1) virus strains. J. Infect. Dis. 214, 1947–1951 (2016).

    Article  PubMed  Google Scholar 

  62. Linderman, S. L. et al. Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proc. Natl Acad. Sci. USA 111, 15798–15803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gagnon, A. et al. Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality. PLoS ONE 8, e69586 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  64. Ma, J., Dushoff, J. & Earn, D. J. D. Age-specific mortality risk from pandemic influenza. J. Theor. Biol. 288, 29–34 (2011).

    Article  PubMed  Google Scholar 

  65. Gagnon, A. et al. Pandemic paradox: early life H2N2 pandemic influenza infection enhanced susceptibility to death during the 2009 H1N1 pandemic. mBio 9, e02091-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gagnon, A., Acosta, J. E., Madrenas, J. & Miller, M. S. Is antigenic sin always ‘original’? Re-examining the evidence regarding circulation of a human H1 influenza virus immediately prior to the 1918 Spanish flu. PLoS Pathog. 11, e1004615 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Simonsen, L. et al. Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project: a modeling study. PLoS Med. 10, e1001558 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. O’Donnell, C. D. et al. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus. Clin. Vaccin. Immunol. 21, 737–746 (2014).

    Article  Google Scholar 

  69. Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354, 722–726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wratil, P. R. et al. Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to pre-existing immunity to seasonal coronaviruses. Cell Rep. 37, 110169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aran, D., Beachler, D. C., Lanes, S. & Overhage, J. M. Prior presumed coronavirus infection reduces COVID-19 risk: a cohort study. J. Infect. 81, 923–930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sagar, M. et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J. Clin. Invest. 131, e143380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smit, W. L. et al. Heterologous immune responses of serum IgG and secretory IgA against the spike protein of endemic coronaviruses during severe COVID-19. Front. Immunol. 13, 839367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aydillo, T. et al. Immunological imprinting of the antibody response in COVID-19 patients. Nat. Commun. 12, 3781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, L. et al. Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: a retrospective study. Emerg. Microbes Infect. 10, 664–676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Woodruff, M. C. et al. Extrafollicular B-cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506–1516 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaplonek, P. et al. Early cross-coronavirus reactive signatures of humoral immunity against COVID-19. Sci. Immunol. 6, eabj2901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pinotti, F. et al. Potential impact of individual exposure histories to endemic human coronaviruses on age-dependent severity of COVID-19. BMC Med. 19, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thompson, R. N. et al. The impact of cross-reactive immunity on the emergence of SARS-CoV-2 variants. Front. Immunol. 13, 1049458 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Link-Gelles, R. Effectiveness of bivalent mRNA vaccines in preventing symptomatic SARS-CoV-2 infection—increasing community access to testing program, United States, September-November 2022. MMWR Morb. Mortal. Wkly Rep. 71, 1526–1530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith, D. J., Forrest, S., Ackley, D. H. & Perelson, A. S. Variable efficacy of repeated annual influenza vaccination. Proc. Natl Acad. Sci. USA 96, 14001–14006 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cortina-Ceballos, B. et al. Longitudinal analysis of the peripheral B cell repertoire reveals unique effects of immunization with a new influenza virus strain. Genome Med. 7, 124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Avnir, Y. et al. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog. 10, e1004103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Laidlaw, B. J. & Ellebedy, A. H. The germinal centre B-cell response to SARS-CoV-2. Nat. Rev. Immunol. 22, 7–18 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, W. et al. Germinal centre-driven maturation of B-cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, Z. et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 595, 426–431 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Z. et al. Memory B cell responses to Omicron subvariants after SARS-CoV-2 mRNA breakthrough infection in humans. J. Exp. Med. 219, e20221006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moriyama, S. et al. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 54, 1841–1852 (2021).

  92. Sokal, A. et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 184, 1201–1213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dugan, H. L. et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 54, 1290–1303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muecksch, F. et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 607, 128–134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park, Y.-J. et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 378, 619–627 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Reynolds, C. J. et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 377, eabq1841 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

    CAS  PubMed  Google Scholar 

  98. Quandt, J. et al. Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci. Immunol. 7, eabq2427 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Kaku, C. I. et al. Evolution of antibody immunity following Omicron BA.1 breakthrough infection. Nat. Commun. 14, 2751 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reynolds, C. J. et al. Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science 375, 183–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Butler, D. Long-term studies will track indelible marks of first flu. Nature 569, 464–465 (2019).

    Google Scholar 

  102. Kim, J. H., Skountzou, I., Compans, R. & Jacob, J. Original antigenic sin responses to influenza viruses. J. Immunol. 183, 3294–3301 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Fox, A. et al. Opposing effects of prior infection versus prior vaccination on vaccine immunogenicity against influenza A(H3N2) viruses. Viruses 14, 470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saito, N. et al. Negative impact of prior influenza vaccination on current influenza vaccination among people infected and not infected in prior season: a test-negative case-control study in Japan. Vaccine 35, 687–693 (2017).

    Article  PubMed  Google Scholar 

  105. Greaney, A. J. et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Sci. Transl. Med. 13, eabi9915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Amanat, F. et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2. Cell 184, 3936–3948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pillai, S. SARS-CoV-2 vaccination washes away original antigenic sin. Trends Immunol. 43, 271–273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Buckner, C. M. et al. Interval between prior SARS-CoV-2 infection and booster vaccination impacts magnitude and quality of antibody and B cell responses. Cell 185, 4333–4346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Worobey, M., Plotkin, S. & Hensley, S. E. Influenza vaccines delivered in early childhood could turn antigenic sin into antigenic blessings. Cold Spring Harb. Perspect. Med. 10, a038471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bodewes, R. et al. Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin. Vaccin. Immunol. 18, 469–476 (2011).

    Article  CAS  Google Scholar 

  112. Belshe, R. B. et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 356, 685–696 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Pilapitiya, D., Wheatley, A. K. & Tan, H.-X. Mucosal vaccines for SARS-CoV-2: triumph of hope over experience. eBioMedicine 92, 104585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meade, P. et al. Antigenic landscape analysis of individuals vaccinated with a universal influenza virus vaccine candidate reveals induction of cross-subtype immunity. J. Virol. 97, e0107022 (2022).

    Article  PubMed  Google Scholar 

  115. Krammer, F. The quest for a universal flu vaccine: headless HA 2.0. Cell Host Microbe 18, 395–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Widge, A. T. et al. An influenza hemagglutinin stem nanoparticle vaccine induces cross-group 1 neutralizing antibodies in healthy adults. Sci. Transl. Med. 15, eade4790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Andrews, S. F. et al. An influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell response in humans. Sci. Transl. Med. 15, eade4976 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Dai, L. et al. Efficacy and safety of the RBD-dimer-based COVID-19 vaccine ZF2001 in adults. N. Engl. J. Med. 386, 2097–2111 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Hernández-Bernal, F. et al. Safety, tolerability and immunogenicity of a SARS-CoV-2 recombinant spike RBD protein vaccine: a randomised, double-blind, placebo-controlled, phase 1-2 clinical trial (ABDALA Study). eClinicalMedicine 46, 101383 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ng, K. W. et al. SARS-CoV-2 S2-targeted vaccination elicits broadly neutralizing antibodies. Sci. Transl. Med. 14, eabn3715 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Braet, S. M. et al. Timeline of changes in spike conformational dynamics in emergent SARS-CoV-2 variants reveal progressive stabilization of trimer stalk with altered NTD dynamics. eLife 12, e82584 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nachbagauer, R. et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Broecker, F. et al. A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains. npj Vaccines 4, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sun, W. et al. Development of influenza B universal vaccine candidates using the ‘mosaic’ hemagglutinin approach. J. Virol. 93, e00333-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Eggink, D., Goff, P. H. & Palese, P. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain. J. Virol. 88, 699–704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martinez, D. R. et al. Chimeric spike mRNA vaccines protect against sarbecovirus challenge in mice. Science 373, 991–998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu, K. et al. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell 185, 2265–2278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thompson, C. P. et al. A naturally protective epitope of limited variability as an influenza vaccine target. Nat. Commun. 9, 3859 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ross, T. M. et al. A computationally designed H5 antigen shows immunological breadth of coverage and protects against drifting avian strains. Vaccine 37, 2369–2376 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Allen, J. D. & Ross, T. M. Bivalent H1 and H3 COBRA recombinant hemagglutinin vaccines elicit seroprotective antibodies against H1N1 and H3N2 influenza viruses from 2009 to 2019. J. Virol. 96, e0165221 (2022).

    Article  PubMed  Google Scholar 

  131. Allen, J. D. & Ross, T. M. Next generation methodology for updating HA vaccines against emerging human seasonal influenza A(H3N2) viruses. Sci. Rep. 11, 4554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carnell, G. et al. Glycan masking of a non-neutralising epitope enhances neutralising antibodies targeting the RBD of SARS-CoV-2 and its variants. Front. Immunol. 14, 1118523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vishwanath, S. et al. A computationally designed antigen eliciting broad humoral responses against SARS-CoV-2 and related sarbecoviruses. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01094-2 (2023).

  134. Fries, C. N. et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 16, 1–14 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B-cell responses. Nat. Immunol. 20, 362–372 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yuan, Y. et al. A bivalent nanoparticle vaccine exhibits potent cross-protection against the variants of SARS-CoV-2. Cell Rep. 38, 110256 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, R. et al. Development of receptor binding domain (RBD)‐conjugated nanoparticle vaccines with broad neutralization against SARS‐CoV‐2 Delta and other variants. Adv. Sci. (Weinh.) 9, 2105378 (2022).

    Article  CAS  Google Scholar 

  138. Geng, Q. et al. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog. 17, e1009897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ueda, G. et al. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. eLife 9, e57659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. SK Bioscience and GSK’s adjuvanted COVID-19 vaccine candidate meets coprimary objectives in a phase III study; biologics license application submitted for SKYCovioneTM (GBP510/GSK adjuvant) in South Korea. GSK (29 April 2022); https://www.gsk.com/en-gb/media/press-releases/sk-bioscience-and-gsk-s-adjuvanted-covid-19-vaccine-candidate-meets-coprimary-objectives-in-a-phase-iii-study/

  142. Walls, A. C. et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 184, 5432–5447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kang, Y.-F. et al. Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nat. Commun. 13, 2674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bruun, T. U. J., Andersson, A.-M. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rahikainen, R. et al. Overcoming symmetry mismatch in vaccine nanoassembly through spontaneous amidation. Angew. Chem. Int. Ed. 60, 321–330 (2021).

    Article  CAS  Google Scholar 

  146. Cohen, A. A. et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 371, 735–741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cohen, A. A. et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377, eabq0839 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Hills, R. A. et al. Multiviral quartet nanocages elicit broad anti-coronavirus responses for proactive vaccinology. Preprint at https://doi.org/10.1101/2023.02.24.529520 (2023).

  149. Zuccarino-Catania, G. V. et al. CD80 and PD-L2 define functionally distinct memory B-cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McGrath, J. J. C., Li, L. & Wilson, P. C. Memory B cell diversity: insights for optimized vaccine design. Trends Immunol. 43, 343–354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chan, T. D. et al. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity 37, 893–904 (2012).

    Article  CAS  Google Scholar 

  152. Shokat, K. M. & Goodnow, C. C. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375, 334–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K. G. & Nossal, G. J. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375, 331–334 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Silva, M. et al. Targeted elimination of immunodominant B cells drives the germinal center reaction toward subdominant epitopes. Cell Rep. 21, 3672–3680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Meyer-Hermann, M. Injection of antibodies against immunodominant epitopes tunes germinal centers to generate broadly neutralizing antibodies. Cell Rep. 29, 1066–1073 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Angeletti, D. et al. Outflanking immunodominance to target subdominant broadly neutralizing epitopes. Proc. Natl Acad. Sci. USA 116, 13474–13479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Caminschi, I. & Shortman, K. Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol. 33, 71–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Kim, J. H., Davis, W. G., Sambhara, S. & Jacob, J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc. Natl Acad. Sci. USA 109, 13751–13756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Koutsakos, M. & Ellebedy, A. H. Immunological imprinting: understanding COVID-19. Immunity 56, 909–913 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Monge, S., Pastor-Barriuso, R. & Hernán, M. A. The imprinting effect of COVID-19 vaccines: an expected selection bias in observational studies. Brit. Med. J. 381, e074404 (2023).

    Article  PubMed  Google Scholar 

  163. Barda, N. The ups and downs of observational vaccine research. Lancet Infect. Dis. 23, 767–768 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yisimayi, A. et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Preprint at https://doi.org/10.1101/2023.05.01.538516 (2023).

  165. Nuñez, N. G. et al. High-dimensional analysis of 16 SARS-CoV-2 vaccine combinations reveals lymphocyte signatures correlating with immunogenicity. Nat. Immunol. 24, 941–954 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Muik, A. et al. Progressive loss of conserved spike protein neutralizing antibody sites in Omicron sublineages is balanced by preserved T cell immunity. Cell Rep. 42, 112888 (2023).

  167. Inoue, T. & Kurosaki, T. Memory B cells. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00897-3 (2023).

  168. Mohammed, R. N. et al. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun. Signal. 20, 79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ferreira-Gomes, M. et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat. Commun. 12, 1961 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pušnik, J. et al. Memory B cells targeting SARS-CoV-2 spike protein and their dependence on CD4+ T cell help. Cell Rep. 35, 109320 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.Q.H. received funding from the Cambridge Commonwealth, European & International Trust, Croucher Foundation and St John’s College, Cambridge. J.L.H., S.V. and G.W.C. received funding from the Bill & Melinda Gates Foundation and InnovateUK to develop a universal flu vaccine and from CEPI to develop a broadly protective betacoronavirus vaccine. J.L.H., S.V. and DIOSynVax Ltd received funding from InnovateUK to perform a phase 1 clinical trial of a needle-free pan-sarbecovirus vaccine.

Author information

Authors and Affiliations

Authors

Contributions

C.Q.H. and J.L.H. conceived the main ideas for this Review. C.Q.H. researched data and wrote the Review. C.Q.H., S.V., G.W.C. and A.C.Y.C developed the figures with input from J.L.H. All authors contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jonathan Luke Heeney.

Ethics declarations

Competing interests

J.L.H. is an employee of the University of Cambridge and the founder and CEO of DIOSynVax Ltd. J.L.H., S.V. and G.W.C. are inventors of patents on influenza and coronavirus vaccines.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C.Q., Vishwanath, S., Carnell, G.W. et al. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 8, 1971–1985 (2023). https://doi.org/10.1038/s41564-023-01505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01505-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology