Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and opportunities in sharing microbiome data and analyses

Abstract

Microbiome data, metadata and analytical workflows have become ‘big’ in terms of volume and complexity. Although the infrastructure and technologies to share data have been established, the interdisciplinary and multi-omic nature of the field can make resources difficult to identify and use. Following best practices for data deposition requires substantial effort, with sometimes little obvious reward. Gaps remain where microbiome-specific resources for data sharing or reproducibility do not yet exist. We outline available best practices, challenges to their adoption and opportunities in data sharing in microbiome research. We showcase examples of best practices and advocate for their enforcement and incentivization for data sharing. This includes recognition of data curation and sharing endeavours by individuals, institutions, journals and funders. Opportunities for progress include enabling microbiome-specific databases to incorporate future methods for data analysis, integration and reuse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steps and resources for microbial community experimental design, analysis and data sharing.
Fig. 2: Checkpoints for ensuring high-quality microbiome data generation and sharing.

Similar content being viewed by others

References

  1. Kyrpides, N. C., Eloe-Fadrosh, E. A. & Ivanova, N. N. Microbiome data science: understanding our microbial planet. Trends Microbiol. 24, 425–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26, 541–547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible computational research. PLoS Comput. Biol. 9, e1003285 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Teeri, J. A. & Raven, P. H. A National Ecological Observatory Network. Science 298, 1893 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Mason, C. E., Afshinnekoo, E., Tighe, S., Wu, S. & Levy, S. International standards for genomes, transcriptomes and metagenomes. J. Biomol. Tech. 28, 8–18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert, J. A., Jansson, J. K. & Knight, R. Earth Microbiome Project and global systems biology. mSystems 3, e00217–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Wood-Charlson, E. M. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Vangay, P. et al. Microbiome Metadata Standards: report of the National Microbiome Data Collaborative’s Workshop and follow-on activities. mSystems 6, e01194–20 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Reimer, L. C., Förstner, K. U. & Overmann, J. Besser forschen durch offene und FAIRe Daten. Biospektrum 28, 223 (2022).

    Article  Google Scholar 

  21. Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: tools, techniques and challenges. Genome Res. 19, 1141–1152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol. 18, 228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Tenopir, C. et al. Data sharing, management, use and reuse: practices and perceptions of scientists worldwide. PLoS ONE 15, e0229003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, D. et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).

    Article  PubMed Central  Google Scholar 

  27. Brooks, J. P. Challenges for case–control studies with microbiome data. Ann. Epidemiol. 26, 336–341 e331 (2016).

    Article  PubMed  Google Scholar 

  28. McCafferty, J. et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 7, 2116–2125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host–microbiome interactions in experimental science. Nature 534, 191–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265–272 e264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forney, L. J. et al. Comparison of self-collected and physician-collected vaginal swabs for microbiome analysis. J. Clin. Microbiol. 48, 1741–1748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kong, H. H. et al. Performing skin microbiome research: a method to the madness. J. Invest. Dermatol. 137, 561–568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stagaman, K., Sharpton, T. J. & Guillemin, K. Zebrafish microbiome studies make waves. Lab Anim. 49, 201–207 (2020).

    Article  Google Scholar 

  34. Ten Hoopen, P. et al. Marine microbial biodiversity, bioinformatics and biotechnology (M2B3) data reporting and service standards. Stand. Genom. Sci. 10, 20 (2015).

    Article  Google Scholar 

  35. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karsch-Mizrachi, I., Takagi, T. & Cochrane, G. The International Nucleotide Sequence Database collaboration. Nucleic Acids Res. 46, D48–D51 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Mailman, M. D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39, 1181–1186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rehm, H. L. et al. GA4GH: international policies and standards for data sharing across genomic research and healthcare. Cell Genom. 1, 100029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor, C. F. et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25, 887–893 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Conway, R. et al. Standardised coding of diet records: experiences from INTERMAP UK. Br. J. Nutr. 91, 765–771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schriml, L. M. et al. COVID-19 pandemic reveals the peril of ignoring metadata standards. Sci. Data 7, 188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer, F. et al. Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nat. Protoc. 16, 1785–1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weimann, A. et al. From genomes to phenotypes: Traitar, the microbial trait analyzer. mSystems 1, e00101–e00116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khaledi, A. et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol. Med. 12, e10264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Asgari, E., Garakani, K., McHardy, A. C. & Mofrad, M. R. K. MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics 35, 1082 (2019).

    Article  Google Scholar 

  49. Belmann, P. et al. Bioboxes: standardised containers for interchangeable bioinformatics software. Gigascience 4, 47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows. F1000Res 6, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bai, J. et al. BioContainers Registry: searching bioinformatics and proteomics tools, packages and containers. J. Proteome Res. 20, 2056–2061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goble C. et al. Implementing FAIR digital objects in the EOSC-Life workflow collaboratory. Zenodo https://doi.org/10.5281/zenodo.4605654 (2021).

  53. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beghini, F. et al. Integrating taxonomic, functional and strain-level profiling of diverse microbial communities with bioBakery 3. eLife 10, e65088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).

    CAS  PubMed  Google Scholar 

  58. Pasolli, E. et al. Accessible, curated metagenomic data through ExperimentHub. Nat. Methods 14, 1023–1024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics 34, 1235–1237 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 10, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alper, J. et al. Animal Models for Microbiome Research: Advancing Basic and Translational Science: Proceedings of a Workshop (National Academies Press, 2018).

  64. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garber, K. First microbiome-based drug clears phase III, in clinical trial turnaround. Nat. Rev. Drug Discov. 19, 655–656 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Mehta, R. S. et al. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 29, 700–709 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tett, A. et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maleki, F., Ovens, K., Hogan, D. J. & Kusalik, A. J. Gene set analysis: challenges, opportunities and future research. Front. Genet. 11, 654 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Knoppers, B. M., Harris, J. R., Budin-Ljosne, I. & Dove, E. S. A human rights approach to an international code of conduct for genomic and clinical data sharing. Hum. Genet. 133, 895–903 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mangola, S. M., Lund, J. R., Schnorr, S. L. & Crittenden, A. N. Ethical microbiome research with Indigenous communities. Nat. Microbiol. 7, 749–756 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 606, 754–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carroll, S. R. et al. The CARE principles for Indigenous data governance. Data Sci. J 19, 43 (2020).

    Article  Google Scholar 

  75. Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, I. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Meyer, F. et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Agafonov, A. et al. META-pipe cloud setup and execution. F1000Res. 6, 2060 (2017).

    Article  Google Scholar 

  79. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meyer, F. et al. AMBER: assessment of metagenome BinnERs. GigaScience 7, giy069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Meyer, F. et al. Assessing taxonomic metagenome profilers with OPAL. Genome Biol. 20, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Seppey, M., Manni, M. & Zdobnov, E. M. LEMMI: a continuous benchmarking platform for metagenomics classifiers. Genome Res. 30, 1208–1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Fritz, A. et al. CAMISIM: simulating metagenomes and microbial communities. Microbiome 7, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yuen, D. et al. The Dockstore: enhancing a community platform for sharing reproducible and accessible computational protocols. Nucleic Acids Res. 49, W624–W632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barrett, T. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 40, D57–D63 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Courtot, M., Gupta, D., Liyanage, I., Xu, F. & Burdett, T. BioSamples database: FAIRer samples metadata to accelerate research data management. Nucleic Acids Res. 50, D1500–D1507 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Soiland-Reyes, S. et al. Packaging research artefacts with RO-Crate. Data Sci. 5, 97–138 (2022).

    Article  Google Scholar 

  89. Glass, E. et al. Meeting report from the Genomic Standards Consortium (GSC) Workshop 10. Stand. Genomic Sci. 3, 225–231 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Members, M. S. I. B. et al. The metabolomics standards initiative. Nat. Biotechnol. 25, 846–848 (2007).

    Article  Google Scholar 

  91. Buttigieg, P. L. et al. The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semantics 4, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Siegele, D. A. et al. Phenotype annotation with the ontology of microbial phenotypes (OMP). J. Biomed. Semantics 10, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kohler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  94. Gkoutos, G. V., Schofield, P. N. & Hoehndorf, R. The anatomy of phenotype ontologies: principles, properties and applications. Brief. Bioinformatics 19, 1008–1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Turner, P. et al. Microbiology Investigation Criteria for Reporting Objectively (MICRO): a framework for the reporting and interpretation of clinical microbiology data. BMC Med. 17, 70 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy (National Academy of Sciences, 2017).

  97. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440–D444 (2020).

    CAS  PubMed  Google Scholar 

  99. Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Perez-Riverol, Y., Alpi, E., Wang, R., Hermjakob, H. & Vizcaino, J. A. Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics 15, 930–949 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deutsch, E. W. The PeptideAtlas Project. Methods Mol. Biol. 604, 285–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).

    CAS  PubMed  Google Scholar 

  104. Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–D823 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams, E. et al. The Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hartley, M. et al. The BioImage Archive—building a home for life-sciences microscopy data. J. Mol. Biol. 434, 167505 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Yule, K. M. et al. Designing biorepositories to monitor ecological and evolutionary responses to change (version 1). Zenodo https://doi.org/10.5281/zenodo.3880411 (2020).

  111. Human Microbiome Project Consortium A framework for human microbiome research. Nature 486, 215–221 (2012).

    Article  Google Scholar 

  112. The Integrative HMP (iHMP) Research Network Consortium The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).

    Article  Google Scholar 

  113. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Pelletier for providing helpful input and acknowledge funding by the German Research Foundation (NFDI4Microbiota, project no. 460129525 to A.C.M.) and the NIH National Institute of Diabetes and Digestive and Kidney Diseases (grant no. R24DK110499 to C.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.H. and A.C.M. wrote the paper with comments from R.D.F. All authors discussed the content.

Corresponding authors

Correspondence to Curtis Huttenhower or Alice Carolyn McHardy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Adina Howe and Elisha Wood-Charlson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huttenhower, C., Finn, R.D. & McHardy, A.C. Challenges and opportunities in sharing microbiome data and analyses. Nat Microbiol 8, 1960–1970 (2023). https://doi.org/10.1038/s41564-023-01484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01484-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology