Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A relational framework for microbiome research with Indigenous communities

Abstract

Ethical practices in human microbiome research have failed to keep pace with scientific advances in the field. Researchers seeking to ‘preserve’ microbial species associated with Indigenous groups, but absent from industrialized populations, have largely failed to include Indigenous people in knowledge co-production or benefit, perpetuating a legacy of intellectual and material extraction. We propose a framework centred on relationality among Indigenous peoples, researchers and microbes, to guide ethical microbiome research. Our framework centres accountability to flatten historical power imbalances that favour researcher perspectives and interests to provide space for Indigenous worldviews in pursuit of Indigenous research sovereignty. Ethical inclusion of Indigenous communities in microbiome research can provide health benefits for all populations and reinforce mutually beneficial partnerships between researchers and the public.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of relationality concepts in the context of microbiome research with Indigenous peoples.

Similar content being viewed by others

References

  1. Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charmaine, R. Medical experimentation and Indigenous intergenerational memory in the context of twentieth-century Hansen’s Disease treatment in Australia. Health Hist. 20, 54–74 (2018).

    Article  Google Scholar 

  3. Macdonald, N. E., Stanwick, R. & Lynk, A. Canada’s shameful history of nutrition research on residential school children: the need for strong medical ethics in Aboriginal health research. Paediatr. Child Health 19, 64 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. National Research Council (US), Committee on evaluation of 1950s Air Force human health testing in Alaska using radioactive iodine & Arctic Aeromedical Laboratory (US). The Arctic Aeromedical Laboratory’s Thyroid Function Study: a Radiological Risk and Ethical Analysis (National Academy Press, 1996).

  5. Phillip, A. The bizarre ESP experiments conducted on aboriginal children without parental consent. The Washington Post (16 January 2015); https://www.washingtonpost.com/news/morning-mix/wp/2015/01/16/the-bizarre-esp-experiments-conducted-on-aboriginal-children-in-canada-without-parental-consent/

  6. Toombs, E., Lund, J. I., Mushquash, A. R. & Mushquash, C. J. Intergenerational residential school attendance and increased substance use among First Nation adults living off-reserve: an analysis of the aboriginal peoples survey 2017. Front Public Health 10, 1029139 (2022).

    Article  PubMed  Google Scholar 

  7. Nath, S., Handsley-Davis, M., Weyrich, L. S. & Jamieson, L. M. Diversity and bias in oral microbiome research: a commentary. EClinicalMedicine 36, 100923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers, G. B., Ward, J., Brown, A. & Wesselingh, S. L. Inclusivity and equity in human microbiome research. Lancet 393, 728–729 (2019).

    Article  PubMed  Google Scholar 

  9. Crowe, C. C., Sanders, W. E. Jr & Longley, S. Bacterial interference. II. Role of the normal throat flora in prevention of colonization by group A Streptococcus. J. Infect. Dis. 128, 527–532 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Mackowiak, P. A. The normal microbial flora. N. Engl. J. Med. 307, 83–93 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Kuczynski, J. et al. Direct sequencing of the human microbiome readily reveals community differences. Genome Biol. 11, 210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  13. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gareau, M. G., Sherman, P. M. & Walker, W. A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenblum, S., Turnbaugh, P. J. & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl Acad. Sci. USA 109, 594–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohno, H., Tsunemine, S., Isa, Y., Shimakawa, M. & Yamamura, H. Oral administration of Bifidobacterium bifidum G9-1 suppresses total and antigen specific immunoglobulin E production in mice. Biol. Pharm. Bull. 28, 1462–1466 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen, S. F. et al. Rifaximin alters gut microbiota profile, but does not affect systemic inflammation—a randomized controlled trial in common variable immunodeficiency. Sci. Rep. 9, 167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhalodi, A. A., van Engelen, T. S. R., Virk, H. S. & Wiersinga, W. J. Impact of antimicrobial therapy on the gut microbiome. J. Antimicrob. Chemother. 74, i6–i15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gupta, S., Allen-Vercoe, E. & Petrof, E. O. Fecal microbiota transplantation: in perspective. Ther. Adv. Gastroenterol. 9, 229–239 (2016).

    Article  Google Scholar 

  27. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  Google Scholar 

  28. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Gutierrez, B. & Domingo-Calap, P. Phage therapy in gastrointestinal diseases. Microorganisms https://doi.org/10.3390/microorganisms8091420 (2020).

  30. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marini, E. et al. Helicobacter pylori and intestinal parasites are not detrimental to the nutritional status of Amerindians. Am. J. Trop. Med. Hyg. 76, 534–540 (2007).

    Article  PubMed  Google Scholar 

  32. Changhua, L. et al. Epidemiology of human hookworm infections among adult villagers in Hejiang and Santai Counties, Sichuan Province, China. Acta Trop. 73, 243–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Martinez, I. et al. The gut microbiota of rural papua new guineans: composition, diversity patterns and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. https://doi.org/10.1126/sciadv.1500183 (2015).

  35. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Gomez, A. et al. Gut microbiome of coexisting BaAka Pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 14, 2142–2153 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Dominguez-Bello, M. G. et al. Ethics of exploring the microbiome of native peoples. Nat. Microbiol 1, 16097 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. De Wolfe, T. J., Arefin, M. R., Benezra, A. & Rebolleda Gomez, M. Chasing ghosts: race, racism and the future of microbiome research. mSystems 6, e0060421 (2021).

    Article  PubMed  Google Scholar 

  41. Ozga, A. T. et al. Oral microbiome diversity among Cheyenne and Arapaho individuals from Oklahoma. Am. J. Phys. Anthropol. 161, 321–327 (2016).

    Article  PubMed  Google Scholar 

  42. Borgogna, J. C. et al. Vaginal microbiota of American Indian women and associations with measures of psychosocial stress. PLoS ONE 16, e0260813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Minaya, G. & Roque, J. Ethical problems in health research with indigenous or originary peoples in Peru. J. Community Genet. 6, 201–206 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dukepoo, F. C. The trouble with the Human Genome Diversity Project. Mol. Med. Today 4, 242–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Harry, D. Indigenous peoples and gene disputes. Chic. Kent Law Rev. 84, 147–196 (2009).

    Google Scholar 

  46. Declaration of Indigenous Peoples of the Western Hemisphere Regarding the Human Genome Diversity Project (Indigenous Peoples Council on Biocolonialism, 1995).

  47. Fox, K. The illusion of inclusion—the ‘All of Us’ research program and Indigenous peoples’ DNA. N. Engl. J. Med. 383, 411–413 (2020).

    Article  PubMed  Google Scholar 

  48. Resolution ABQ-19-061: Calling upon the National Institutes of Health to Consult with Tribal Nations and Establish Policies and Guidance for Tribal Oversight of Data on Tribal Citizens Enrolled in the All of Us Research Program (National Congress of American Indians, 2019).

  49. Tsosie, K. S., Yracheta, J. M., Kolopenuk, J. A. & Geary, J. We have ‘gifted’ enough: Indigenous genomic data sovereignty in precision medicine. Am. J. Bioeth. 21, 72–75 (2021).

    Article  PubMed  Google Scholar 

  50. Chagnon, C. W. et al. From extractivism to global extractivism: the evolution of an organizing concept. J. Peasant Stud. 49, 760–792 (2022).

    Article  Google Scholar 

  51. Taffel, S. Data and oil: metaphor, materiality and metabolic rifts. N. Media Soc. https://doi.org/10.1177/14614448211017887 (2021).

    Article  Google Scholar 

  52. Kröger, M. Extractivisms, Existences and Extinctions: Monoculture Plantations and Amazon Deforestation (Routledge, 2022).

  53. Willow, A. J. Indigenous ExtrACTIVISM in Boreal Canada: colonial legacies, contemporary struggles and sovereign. Futures Humanities 5, 55 (2016).

    Article  Google Scholar 

  54. Rivera Andía, J. J. & Vindal Ødegaard, C. in Indigenous Life Projects and Extractivism: Ethnographies from South America (eds Vindal Ødegaard, C. & Rivera Andía, J. J.) 1–50 (Springer, 2019).

  55. Benezra, A. Race in the microbiome. Sci. Technol. Hum. Val. 45, 877–902 (2020).

    Article  Google Scholar 

  56. Bello, M. G. D., Knight, R., Gilbert, J. A. & Blaser, M. J. Preserving microbial diversity. Science 362, 33–34 (2018).

    Article  PubMed  Google Scholar 

  57. Wibowo, M. C. et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594, 234–239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tee, M. Z. et al. Gut microbiome of helminth-infected indigenous Malaysians is context dependent. Microbiome 10, 214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Warinner, C., Speller, C., Collins, M. J. & Lewis, C. M. Jr. Ancient human microbiomes. J. Hum. Evol. 79, 125–136 (2015).

    Article  PubMed  Google Scholar 

  60. Nieves Delgado, A. & Baedke, J. Does the human microbiome tell us something about race. Humanities Soc. Sci. Commun. 8, 97 (2021).

    Article  Google Scholar 

  61. Warinner, C., Speller, C. & Collins, M. J. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 45, 450–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Santiago-Rodriguez, T. M. et al. Microbial communities in pre-Columbian coprolites. PLoS ONE 8, e65191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tito, R. Y. et al. Insights from characterizing extinct human gut microbiomes. PLoS ONE 7, e51146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eisenhofer, R., Kanzawa-Kiriyama, H., Shinoda, K. I. & Weyrich, L. S. Investigating the demographic history of Japan using ancient oral microbiota. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bardill, J. et al. Advancing the ethics of paleogenomics. Science 360, 384–385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Claw, K. G. et al. Chaco Canyon dig unearths ethical concerns. Hum. Biol. 89, 177–180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mackie, M., Radini, A. & Speller, C. F. The sustainability of dental calculus for archaeological research. In Shallow Pasts, Endless Horizons: Sustainability & Archaeology: Proceedings of the 48th Annual Chacmool Archaeology Conference (eds Favreau, J. & Patalano, R.) 74–81 (Chacmool Archaeological Association, 2017).

  70. Black, J., Kerr, S., Henebry-DeLeon, L. & Lorenz, J. G. Dental calculus as an alternate source of mitochondrial DNA for analysis of skeletal remains. Proc. Soc. California Archaeol. 25, 1–7 (2011).

  71. Claw, K. G. et al. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9, 2957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fox, K. & Hawks, J. Use ancient remains more wisely. Nature 572, 581–583 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Bader, A. C., Carbaugh, A. E., Davis, J. L., Krupa, K. L. & Malhi, R. S. Biological samples taken from Native American ancestors are human remains under NAGPRA. Am. J. Biol. Anthropol 181, 527–534 (2023).

    Article  PubMed  Google Scholar 

  74. Mangola, S. M., Lund, J. R., Schnorr, S. L. & Crittenden, A. N. Ethical microbiome research with Indigenous communities. Nat. Microbiol. 7, 749–756 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Tsosie, K. S., Yracheta, J. M. & Dickenson, D. Overvaluing individual consent ignores risks to tribal participants. Nat. Rev. Genet. 20, 497–498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bethlehem, J. G., Keller, W. J. & Pannekoek, J. Disclosure control of microdata. J. Am. Stat. Assoc. 85, 38–45 (1990).

    Article  Google Scholar 

  77. Garrison, N. A. Genomic justice for Native Americans: impact of the Havasupai Case on genetic research. Sci. Technol. Hum. Values 38, 201–223 (2013).

    Article  Google Scholar 

  78. Food and Agriculture Organization of the United Nations. Free Prior and Informed Consent—An Indigenous Peoples’ Right and a Good Practice for Local Communities (FAO, 2016); https://www.fao.org/3/i6190e/i6190e.pdf

  79. Carroll, S. R., Rodriguez-Lonebear, D. & Martinez, A. Indigenous data governance: strategies from United States Native nations. Data Sci. J. https://doi.org/10.5334/dsj-2019-031 (2019).

  80. Kozik, A. J. mSphere of influence: frameshift—a vision for human microbiome research. mSphere https://doi.org/10.1128/mSphere.00944-20 (2020).

  81. Ishaq, S. L. et al. Introducing the Microbes and Social Equity Working Group: considering the microbial components of social, environmental and health justice. mSystems 6, e0047121 (2021).

    Article  PubMed  Google Scholar 

  82. Tynan, L. What is relationality? Indigenous knowledges, practices and responsibilities with kin. Cultural Geogr. 28, 597–610 (2021).

    Article  Google Scholar 

  83. Redvers, N., Yellow Bird, M., Quinn, D., Yunkaporta, T. & Arabena, K. Molecular decolonization: an Indigenous microcosm perspective of planetary health. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17124586 (2020).

  84. Handsley-Davis, M. et al. Microbiome ownership for Indigenous peoples. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01470-3 (2023).

  85. Wilson, S. Guest editorial: what is an Indigenist research paradigm? Can. J. Nativ. Educ. 30, 193–195 (2007).

    Google Scholar 

  86. Warbrick, I., Heke, D. & Breed, M. Indigenous knowledge and the microbiome-bridging the disconnect between colonized places, peoples and the unseen influences that shape our health and well-being. mSystems 8, e0087522 (2023).

    Article  PubMed  Google Scholar 

  87. Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Dominguez-Huerta, G. et al. Diversity and ecological footprint of Global Ocean RNA viruses. Science 376, 1202–1208 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Zinsstag, J., Schelling, E., Waltner-Toews, D. & Tanner, M. From ‘one medicine’ to ‘one health’ and systemic approaches to health and well-being. Prev. Vet. Med. 101, 148–156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reo, N. J. Inawendiwin and relational accountability in Anishnaabeg studies: the crux of the biscuit. J. Ethnobiol. 39, 65–75 (2019).

    Article  Google Scholar 

  95. Baquero, F. & Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 18, 2–4 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Priya, S. et al. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat. Microbiol. 7, 780–795 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Watanabe, H. et al. Minor taxa in human skin microbiome contribute to the personal identification. PLoS ONE 13, e0199947 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Meadow, J. F. et al. Humans differ in their personal microbial cloud. PeerJ https://doi.org/10.7717/peerj.1258 (2015).

  99. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Breitwieser, F. P., Pertea, M., Zimin, A. V. & Salzberg, S. L. Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Res. 29, 954–960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Donald, D. Chapter three: From what does ethical relationality flow? An ‘Indian’ Act in three artifacts. Counterpoints 478, 10–16 (2016).

    Google Scholar 

  103. Severson, A. L. et al. Ancient and modern genomics of the Ohlone Indigenous population of California. Proc. Natl Acad. Sci. USA 119, e2111533119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hudson, M. et al. Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. Nat. Rev. Genet. 21, 377–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Anderson, J. & Hudson, M. The biocultural labels initiative: supporting Indigenous rights in data derived from genetic resources. Biodivers. Inf. Sci. Stand. 4, e59230 (2020).

    Google Scholar 

  106. Arbour, L. & Cook, D. DNA on loan: issues to consider when carrying out genetic research with aboriginal families and communities. Community Genet. 9, 153–160 (2006).

    PubMed  Google Scholar 

  107. Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR Principles for Indigenous data futures. Sci. Data 8, 108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Prictor, M., Huebner, S., Teare, H. J. A., Burchill, L. & Kaye, J. Australian Aboriginal and Torres Strait Islander collections of genetic heritage: the legal, ethical and practical considerations of a dynamic consent approach to decision making. J. Law Med. Ethics 48, 205–217 (2020).

    Article  PubMed  Google Scholar 

  109. Foxx, A. J. et al. Advancing equity and inclusion in microbiome research and training. mSystems 6, e0115121 (2021).

    Article  PubMed  Google Scholar 

  110. Lorimer, J. et al. Making the microbiome public: participatory experiments with DNA sequencing in domestic kitchens. Trans. Inst. Br. Geogr. 44, 524–541 (2019).

    Article  Google Scholar 

  111. Wu, K. J. In collecting Indigenous feces, a slew of sticky ethics. UNDARK (6 April 2020); https://undark.org/2020/04/06/microbiome-feces-indigenous-ethics/

  112. Sankaranarayanan, K. et al. Gut microbiome diversity among Cheyenne and Arapaho individuals from Western Oklahoma. Curr. Biol. 25, 3161–3169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vision Mātauranga: Unlocking the Innovation Potential of Māori Knowledge, Resources and People (Ministry of Research, Science and Technology, 2007).

Download references

Acknowledgements

We thank S. Muller for her time and technical expertise in designing the figure. We also thank the numerous Indigenous communities, colleagues, friends and relatives who have helped shape our ideas and understanding to form the foundation for this framework. Funding for M.Z.A. was supported through NSF CAREER Award 2046863 and the Chan Zuckerberg Initiative Science Diversity Leadership Award. A.C.B. was supported through NSF SPRF Award 1911813.

Author information

Authors and Affiliations

Authors

Contributions

A.C.B. and M.Z.A. wrote the initial manuscript. All authors provided edits and approved the final version.

Corresponding authors

Correspondence to Alyssa C. Bader or Matthew Z. Anderson.

Ethics declarations

Competing interests

M.Z.A. is a board member of the Native BioData Consortium. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Erika Szymanski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, A.C., Van Zuylen, E.M., Handsley-Davis, M. et al. A relational framework for microbiome research with Indigenous communities. Nat Microbiol 8, 1768–1776 (2023). https://doi.org/10.1038/s41564-023-01471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01471-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology