Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Human microbiome myths and misconceptions

Abstract

Over the past two decades, interest in human microbiome research has increased exponentially. Regrettably, this increased activity has brought with it a degree of hype and misinformation, which can undermine progress and public confidence in the research. Here we highlight selected human microbiome myths and misconceptions that lack a solid evidence base. By presenting these examples, we hope to draw increased attention to the implications of inaccurate dogma becoming embedded in the literature, and the importance of acknowledging nuance when describing the complex human microbiome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of the human gut microbiota dramatically increases in the years after birth.
Fig. 2: Difficulties of establishing causality from correlation-based microbiota studies.

References

  1. Hacker, J. & Blum-Oehler, G. In appreciation of Theodor Escherich. Nat. Rev. Microbiol. 5, 902 (2007).

    CAS  Google Scholar 

  2. Cruickshank, R. Bacillus bifidus: its characters and isolation from the intestine of infants. J. Hyg. 24, 241–254 (1925).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Metchnikoff, E. The Prolongation of Life: Optimistic Studies (William Heinemann, G. P. Putnam’s Sons, 1907).

  4. Miller, I. The gut–brain axis: historical reflections. Microb. Ecol. Health Dis. 29, 1542921 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Roediger, W. E. W. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 316, 712–715 (1980).

    Google Scholar 

  6. Prescott, S. L. History of medicine: origin of the term microbiome and why it matters. Hum. Microb. J. 4, 24–25 (2017).

    Google Scholar 

  7. Stephen, A. M. & Cummings, J. H. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56 (1980).

    CAS  PubMed  Google Scholar 

  8. Hoyles, L. & McCartney, A. L. What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota? FEMS Microbiol. Lett. 299, 175–183 (2009).

    CAS  PubMed  Google Scholar 

  9. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    CAS  PubMed  Google Scholar 

  10. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Cummings, J. H., Bingham, S. A., Heaton, K. W. & Eastwood, M. A. Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 103, 1783–1789 (1992).

    CAS  PubMed  Google Scholar 

  12. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    CAS  PubMed  Google Scholar 

  14. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  17. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

  18. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schäffler, H. & Breitrück, A. Clostridium difficile – from colonization to infection. Front. Microbiol. 9, 646 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Worby, C. J. et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat. Microbiol. 7, 630–639 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olesen, S. W. & Alm, E. J. Dysbiosis is not an answer. Nat. Microbiol. 1, 16228 (2016).

    CAS  PubMed  Google Scholar 

  22. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Damhorst, G. L., Adelman, M. W., Woodworth, M. H. & Kraft, C. S. Current capabilities of gut microbiome-based diagnostics and the promise of clinical application. J. Infect. Dis. 223, S270–S275 (2021).

    CAS  PubMed  Google Scholar 

  25. Finucane, M. M., Sharpton, T. J., Laurent, T. J. & Pollard, K. S. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE 9, e84689 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Tettamanti Boshier, F. A. et al. Complementing 16S rRNA gene amplicon sequencing with total bacterial load to infer absolute species concentrations in the vaginal microbiome. mSystems 5, e00777-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. Reichardt, N. et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 12, 610–622 (2018).

    CAS  PubMed  Google Scholar 

  30. Méric, G., Wick, R. R., Watts, S. C., Holt, K. E. & Inouye, M. Correcting index databases improves metagenomic studies. Preprint at bioRxiv https://doi.org/10.1101/712166 (2019).

  31. Daniel, S. L. et al. Forty years of Oxalobacter formigenes, a gutsy oxalate-degrading specialist. Appl. Environ. Microbiol. 87, e0054421 (2021).

    PubMed  Google Scholar 

  32. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    CAS  PubMed  Google Scholar 

  34. Rajilić-Stojanović, M., Smidt, H. & de Vos, W. M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 9, 2125–2136 (2007).

    PubMed  Google Scholar 

  35. Wesolowska-Andersen, A. et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Munafò, M. R. & Smith, G. D. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).

    PubMed  Google Scholar 

  37. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018).

    CAS  PubMed  Google Scholar 

  39. Belda, E. et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 71, 2463–2480 (2022).

    CAS  PubMed  Google Scholar 

  40. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lagkouvardos, I., Overmann, J. & Clavel, T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 8, 493–503 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Moore, W. E. C. & Holdeman, L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27, 961–979 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lagier, J. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    CAS  PubMed  Google Scholar 

  44. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Walker, A. W., Duncan, S. H., Louis, P. & Flint, H. J. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol 22, 267–274 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.W.W. would like to thank S. Patrick for the original invitation to give a talk on this topic, which inspired the subsequent writing of this article. A.W.W. and the Rowett Institute receive core funding support from the Scottish Government’s Rural and Environment Science and Analytical Services division. L.H. is funded by Alzheimer’s Research UK, Healthcare Infection Society, Diabetes UK, Cancer Research UK and the European Union’s Horizon 2020 research and innovation programme under grant agreement 874583. This publication reflects only the authors’ views and the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Ami Bhatt, Fergus Shanahan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, A.W., Hoyles, L. Human microbiome myths and misconceptions. Nat Microbiol 8, 1392–1396 (2023). https://doi.org/10.1038/s41564-023-01426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01426-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology