Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromosome organization affects genome evolution in Sulfolobus archaea

Abstract

In all organisms, the DNA sequence and the structural organization of chromosomes affect gene expression. The extremely thermophilic crenarchaeon Sulfolobus has one circular chromosome with three origins of replication. We previously revealed that this chromosome has defined A and B compartments that have high and low gene expression, respectively. As well as higher levels of gene expression, the A compartment contains the origins of replication. To evaluate the impact of three-dimensional organization on genome evolution, we characterized the effect of replication origins and compartmentalization on primary sequence evolution in eleven Sulfolobus species. Using single-nucleotide polymorphism analyses, we found that distance from an origin of replication was associated with increased mutation rates in the B but not in the A compartment. The enhanced polymorphisms distal to replication origins suggest that replication termination may have a causal role in their generation. Further mutational analyses revealed that the sequences in the A compartment are less likely to be mutated, and that there is stronger purifying selection than in the B compartment. Finally, we applied the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to show that the B compartment is less accessible than the A compartment. Taken together, our data suggest that compartmentalization of chromosomal DNA can influence chromosome evolution in Sulfolobus. We propose that the A compartment serves as a haven for stable maintenance of gene sequences, while sequences in the B compartment can be diversified.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Chromosome organization and proximity to origin of replication.
Fig. 2: Heterogeneous SNP distribution in the A and B compartments.
Fig. 3: Distribution of G4 and IS in the A and B compartments.
Fig. 4: Variation of selection in the A and B compartments of Sulfolobus islandicus REY15A.
Fig. 5: ATAC-seq analysis in Sulfolobus islandicus E233S.
Fig. 6: Conservation of compartmentalization and genome evolution in Sulfolobales.

Data availability

All sequencing data used in this study have been deposited to the NCBI Sequence Read Archive (SRA) under project number PRJNA814106. Source data are provided with this paper.

Code availability

No custom code was generated for this work.

References

  1. Bryant, J. A., Sellars, L. E., Busby, S. J. W. & Lee, D. J. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res. 42, 11383–11392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0195-2 (2019).

  4. Wit, Ede & Laat, Wde A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lioy, V. S., Junier, I., Lagage, V., Vallet, I. & Boccard, F. Distinct activities of bacterial condensins for chromosome management in Pseudomonas aeruginosa. Cell Rep. 33, 108344 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Collombet, S. et al. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature https://doi.org/10.1038/s41586-020-2125-z (2020).

  9. Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takemata, N. & Bell, S. D. Multi-scale architecture of archaeal chromosomes. Mol. Cell 81, 473–487.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. van Bemmel, J. G. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat. Genet. 51, 1024–1034 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berthelot, C., Muffato, M., Abecassis, J. & Roest Crollius, H. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep. 10, 1913–1924 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Tao, J.-F. et al. Influence of chromatin 3D organization on structural variations of the Arabidopsis thaliana genome. Mol. Plant 10, 340–344 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cockram, C., Thierry, A., Gorlas, A., Lestini, R. & Koszul, R. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol. Cell 81, 459–472.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Takemata, N., Samson, R. Y. & Bell, S. D. Physical and functional compartmentalization of archaeal chromosomes. Cell 179, 165–179.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greci, M. D. & Bell, S. D. Archaeal DNA replication. Annu. Rev. Microbiol. 74, 65–80 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Takemata, N. & Bell, S. D. Emerging views of genome organization in Archaea. J. Cell Sci. 133, jcs243782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, L. et al. Genome analyses of icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus–host interaction studies. J. Bacteriol. 193, 1672–1680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krause, D. J., Didelot, X., Cadillo-Quiroz, H. & Whitaker, R. J. Recombination shapes genome architecture in an organism from the archaeal domain. Genome Biol. Evol. 6, 170–178 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mao, D. & Grogan, D. W. How a genetically stable extremophile evolves: modes of genome diversification in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 199, e00177–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersson, A. F. et al. Replication-biased genome organisation in the crenarchaeon Sulfolobus. BMC Genomics 11, 454 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Flynn, K. M., Vohr, S. H., Hatcher, P. J. & Cooper, V. S. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol. Evol. 2, 859–869 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Paul, S., Million-Weaver, S., Chattopadhyay, S., Sokurenko, E. & Merrikh, H. Accelerated gene evolution through replication–transcription conflicts. Nature 495, 512–515 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Srivatsan, A., Tehranchi, A., MacAlpine, D. M. & Wang, J. D. Co-orientation of replication and transcription preserves genome integrity. PLOS Genet. 6, e1000810 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Du, X. et al. Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation. Nucleic Acids Res. 42, 12367–12379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guiblet, W. M. et al. Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 28, 1767–1778 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guiblet, W. M. et al. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res. 49, 1497–1516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, G. & Vasquez, K. M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19, 143–151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Brázda, V. et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kejnovsky, E., Tokan, V. & Lexa, M. Transposable elements and G-quadruplexes. Chromosome Res. 23, 615–623 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Yadav, V., Hemansi, Kim, N., Tuteja, N. & Yadav, P. G quadruplex in plants: a ubiquitous regulatory element and its biological relevance. Front. Plant Sci. 8, 1163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ramsden, D. A., Weed, B. D. & Reddy, Y. V. R. V(D)J recombination: born to be wild. Semin. Cancer Biol. 20, 254–260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cree, S. L., Chua, E. W., Crowther, J., Dobson, R. C. J. & Kennedy, M. A. G-quadruplex structures bind to EZ-Tn5 transposase. Biochimie 177, 190–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  Google Scholar 

  41. Couturier, E. & Rocha, E. P. C. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol. Microbiol. 59, 1506–1518 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43, 1059–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandler, M. G. & Pritchard, R. H. The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol. Gen. Genet. 138, 127–141 (1975).

    Article  CAS  PubMed  Google Scholar 

  45. Bernander, R. & Poplawski, A. Cell cycle characteristics of thermophilic archaea. J. Bacteriol. 179, 4963–4969 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rocha, E. P. C. The organization of the bacterial genome. Annu. Rev. Genet. 42, 211–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Mei, Q. et al. Two mechanisms of chromosome fragility at replication-termination sites in bacteria. Sci. Adv. 7, eabe2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duggin, I. G., McCallum, S. A. & Bell, S. D. Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc. Natl Acad. Sci. USA 105, 16737–16742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duggin, I. G., Dubarry, N. & Bell, S. D. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus. EMBO J. 30, 145–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Samson, R. Y. et al. Specificity and function of archaeal DNA replication initiator proteins. Cell Rep. 3, 485–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dorazi, R., Götz, D., Munro, S., Bernander, R. & White, M. F. Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol. Microbiol. 63, 521–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Robinson, N. P. & Bell, S. D. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc. Natl Acad. Sci. USA 104, 5806–5811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, C., Phillips, A. P. R., Wipfler, R. L., Olsen, G. J. & Whitaker, R. J. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat. Commun. 9, 4908 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fagan, R. P. & Fairweather, N. F. Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12, 211–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Korber-Irrgang, B. HIV signature and sequence variation analysis. Comput. Anal. HIV Mol. Seq. 4, 55–72 (2000).

    Google Scholar 

  59. Deng, L., Zhu, H., Chen, Z., Liang, Y. X. & She, Q. Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13, 735 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki, T. et al. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6, 39–44 (2002).

    Article  PubMed  Google Scholar 

  61. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972).

    Article  CAS  PubMed  Google Scholar 

  62. Itoh, T. et al. Sulfuracidifex tepidarius gen. nov., sp. nov. and transfer of Sulfolobus metallicus Huber and Stetter 1992 to the genus Sulfuracidifex as Sulfuracidifex metallicus comb. nov. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.003981 (2020).

  63. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takemata, N. & Bell, S. D. High-resolution analysis of chromosome conformation in hyperthermophilic archaea. STAR Protoc. 2, 100562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cockram, C., Thierry, A. & Koszul, R. Generation of gene-level resolution chromosome contact maps in bacteria and archaea. STAR Protoc. 2, 100512 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in Archaea. Science 322, 1710–1713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in S.D.B.’s lab was supported by NIH R01GM135178 and the College of Arts and Sciences, Indiana University. R.Y.S. was supported by the College of Arts and Sciences, Indiana University. We thank N. Takemata for advice and assistance with software for the 3C studies. Sequencing was performed by the Center for Genomics and Bioinformatics, Indiana University.

Author information

Authors and Affiliations

Authors

Contributions

C.B. designed experimental approaches, conducted experimental work, analysed the data and wrote the initial draft of the manuscript. R.Y.S. designed experimental approaches, conducted experimental work, analysed the data and edited the manuscript. S.D.B. designed experimental approaches, analysed the data and co-wrote the manuscript.

Corresponding author

Correspondence to Stephen D. Bell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Remus Dame, Frédéric Boccard and Thorsten Allers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The effects of inactivating origins of replication in Sulfolobus islandicus REY15A.

a. Diagram of the Sulfolobus islandicus REY15A chromosome. The three origins of replication are shown as open circles on the chromosome. b. Marker frequency analysis of wild-type cells (left) and cells lacking Orc1-1 and Orc1-3 (right). Marker ratios of sequence tag abundance across the chromosome of exponentially growing cells normalized to non-replicating stationary phase cells are plotted relative to genome position. Genome coordinates are shown on the x-axes. The locations of active origins of replication are indicated above the plots. c. ChIP-seq analysis of ClsN enrichment on wild-type (top) and Δorc1-1, orc1-3 (bottom) chromosomes. All ChIP data are normalized to input DNA. Genome coordinates are shown on the x-axis. d. Scatterplot showing ClsN enrichment in the Δorc1-1, orc1-3 strain versus the wild-type strain for each data bin plotted in panel C. e. Transcript abundance profiles of wild-type (top) and Δorc1-1, orc1-3 strains (bottom) calculated for each gene. Genome coordinates are shown on the x-axis. F. Scatterplot showing RNA abundance in the Δorc1-1, orc1-3 strain versus the wild-type strain for each protein-coding gene.

Source data

Extended Data Fig. 2 SNP density and gene orientation for Sulfolobus islandicus REY15A.

Violin plot of the SNP density in genes oriented head-on or codirectionally with respect to replication, for A and B compartments. The p-value of the Wilcoxon test (two-sided) is indicated and the horizontal line represents the median.

Source data

Extended Data Fig. 3 Raw results of ATACseq analysis in Sulfolobus islandicus E233S.

a. Raw accessibility score for fixed cells, non-fixed cells and purified genomic DNA, plotted along the chromosome. b. DNA abundance in the genomic DNA from replicate 3, used to determine the transposition bias. c. Distribution density of paired-end sequenced insert size, mapped to the A or B compartment. d. Correlation between the raw accessibility score of replicates.

Source data

Extended Data Fig. 4 Phylogeny of the Sulfolobales.

16S rRNA phylogeny of Sulfolobales species with at least one complete genome sequenced, computed by ML. Species analyzed in this article are indicated in bold. Chi2-based likelihood is indicated when lower than 90%.

Source data

Extended Data Fig. 5 3C-seq contact heat-maps and marker frequency analysis (MFA) for Sulfurisphaera tokodaii strain 7.

a. Heat-map representing the contact score of pairs of 5-kb bins for iced-normalized 3C-seq data. b. Pearson-correlation analysis of the matrix presented in A. C. Marker Frequency Analysis. Read count ratios of exponentially growing cells normalized to non-replicating stationary phase cells are plotted relative to genome position.

Source data

Extended Data Fig. 6 3C-seq contact heat-maps and marker frequency analysis (MFA) for Sulfuracidifex tepidarius JCM16833.

a. Heat-map representing the contact score of pairs of 5-kb bins for iced-normalized 3C-seq data. b. Pearson-correlation analysis of the matrix presented in A. c. Marker Frequency Analysis. Read count ratios of exponentially growing cells normalized to non-replicating stationary phase cells are plotted relative to genome position.

Source data

Extended Data Fig. 7 Comparison of normalization methods for the quantification of 3C contact scores for Sulfuracidifex tepidarius JCM16833.

The distribution of the enzyme AluI restriction sites, DNA abundance in the analyzed cell population and various contact scores are plotted along the chromosome. Dot color indicates the compartment.

Source data

Extended Data Fig. 8 Primary chromosome organization in Sulfolobus acidocaldarius DSM639.

a. Chromosome organization, including the localization of the compartments, the origins of replication and the putative zones where replication forks collapse b to d. SNP density, ClsN enrichment and transcription level of protein-coding genes plotted in function of their distance to the nearest origin of replication for the A (red circle) and B (blue square) compartments. Continuous lines represent linear regressions for the A compartment in red, and the B compartment in blue. Pearson correlation p-values and coefficients are indicated for the A and B compartments. e. Violin plot of the distance to the nearest origin of replication for the dispensable and essential protein-coding genes of the A and B compartments. f. Violin plot of the G4 count per 10 kb window for A and B compartments. g. Violin plot of the SNP density in essential or dispensable protein-coding genes for the A and B compartments. h. Violin plot of the SNP density in genes oriented head-on or codirectionally with respect to replication, for A and B compartments. i. dN/dS of protein-coding genes plotted along their position on the chromosome. The A and B compartment localizations are indicated in red and blue respectively. Black vertical lines represent protein-coding genes that do not have orthologues in all the strains of the Sulfolobus acidocaldarius dataset and for which no dN/dS value was calculated. j. Violin plots of dN/dS value of protein-coding genes and of essential or dispensable protein-coding genes in the A and B compartments. dN/dS presented a bimodal distribution. The p-value of the Kolmogorov-Smirnov test (two-sided) is indicated at the top in bold. Two-sided student tests were performed for values higher or lower than the anti-mode and their p-values are indicated in in italic. For violin plots, except in J, the p-value of the Wilcoxon test (two-sided) is indicated and the horizontal line represents the median.

Source data

Extended Data Fig. 9 Dotplot of orthologous genes between pairs of Sulfolobales strains.

Vertical and Horizontal red backgrounds indicate the A compartment in the corresponding strains. The dot color indicates the gene compartment conservation between the two strains.

Source data

Supplementary information

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badel, C., Samson, R.Y. & Bell, S.D. Chromosome organization affects genome evolution in Sulfolobus archaea. Nat Microbiol 7, 820–830 (2022). https://doi.org/10.1038/s41564-022-01127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01127-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing