Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial metabolites in the marine carbon cycle

Abstract

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial metabolites drive the carbon cycle in the surface ocean.
Fig. 2: Sources of the labile microbial metabolites in the surface ocean.
Fig. 3: Diel synchrony in microbial synthesis, release and utilization of metabolites.
Fig. 4: The marine DOC spectrum.

Similar content being viewed by others

References

  1. Azam, F. et al. The ecological role of water-column microbes. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  Google Scholar 

  2. Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).

    Article  PubMed  Google Scholar 

  3. Weber, L. et al. Extracellular reef metabolites across the protected Jardines de la Reina, Cuba reef system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.582161 (2020).

  4. Widner, B., Kido Soule, M. C., Ferrer-González, F. X., Moran, M. A. & Kujawinski, E. B. Quantification of amine-and alcohol-containing metabolites in saline samples using pre-extraction benzoyl chloride derivatization and ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS). Anal. Chem. 93, 4809–4817 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Fogg, G. E. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar. 26, 3–14 (1983).

    Article  CAS  Google Scholar 

  6. Morán, X. A. G., Ducklow, H. W. & Erickson, M. Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton. Mar. Ecol. Prog. Ser. 489, 75–85 (2013).

    Article  Google Scholar 

  7. Mühlenbruch, M., Grossart, H. P., Eigemann, F. & Voss, M. Phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ. Microbiol. 20, 2671–2685 (2018).

    Article  PubMed  Google Scholar 

  8. Flynn, K. J., Clark, D. R. & Xue, Y. Modeling the release of dissolved organic matter by phytoplankton 1. J. Phycol. 44, 1171–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Bjørrisen, P. K. Phytoplankton exudation of organic matter: why do healthy cells do it? Limnol. Oceanogr. 33, 151–154 (1988).

    Article  Google Scholar 

  10. Myklestad, S. M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci. Total Environ. 165, 155–164 (1995).

    Article  CAS  Google Scholar 

  11. Falkowski, P. & Raven, J. Aquatic Photosynthesis 2nd edn (Princeton Univ. Press, 2007).

  12. Lau, W. W. & Armbrust, E. V. Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ. Microbiol. 8, 1688–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wood, A. M. & Van Valen, L. M. Paradox lost? On the release of energy-rich compounds by photoplankton. Mar. Microb. Food Webs 4, 103–116 (1990).

    Google Scholar 

  14. Hellebust, J. Excretion of organic compounds by cultured and natural populations of marine phytoplankton. Estuaries 10, 192–206 (1967).

    Google Scholar 

  15. Thornton, D. C. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).

    Article  CAS  Google Scholar 

  16. Wangersky, P. in Micobial Ecology Vol. IV (ed. Kinne, O) 115–220 (Wiley, 1978).

  17. Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4, 1706–1715 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Mague, T., Friberg, E., Hughes, D. & Morris, I. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 24, 262–279 (1980).

    Article  Google Scholar 

  20. Vardi, A. et al. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 4, e60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gillard, J. et al. Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew. Chem. Int. Ed. 52, 854–857 (2013).

  22. Brunson, J. K. et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science 361, 1356–1358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003).

    Article  Google Scholar 

  24. Granum, E., Kirkvold, S. & Myklestad, S. M. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar. Ecol. Prog. Ser. 242, 83–94 (2002).

    Article  CAS  Google Scholar 

  25. Mague, T., Friberg, E., Hughes, D. & Morris, I. Extracellular release of carbon by marine phytoplankton; a physiological approach 1. Limnol. Oceanogr. 25, 262–279 (1980).

    Article  CAS  Google Scholar 

  26. Puskaric, S. & Mortain-Bertrand, A. Physiology of diatom Skeletonema costatum (Grev.) Cleve photosynthetic extracellular release: evidence for a novel coupling between marine bacteria and phytoplankton. J. Plankton Res. 25, 1227–1235 (2003).

    Article  CAS  Google Scholar 

  27. Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frischkorn, K. R., Haley, S. T. & Dyhrman, S. T. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J. 12, 997–1007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7, 341–375 (2015).

    Article  PubMed  Google Scholar 

  30. Vardi, A. et al. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl Acad. Sci. USA 109, 19327–19332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Møller, E. F. & Nielsen, T. G. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell size. J. Plankton Res. 23, 527–536 (2001).

    Article  Google Scholar 

  32. Nagata, T. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 121–152 (Wiley-Liss, 2000).

  33. Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).

    Article  CAS  Google Scholar 

  34. Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Z. et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 13, 2551–2565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31, 161–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Kuhlisch, C. et al. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Sci. Adv. 7, eabf4680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klawonn, I. et al. Characterizing the ‘fungal shunt’: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl Acad. Sci. USA 118, e2102225118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agustí, S., Satta, M. P., Mura, M. P. & Benavent, E. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol. Oceanogr. 43, 1836–1849 (1998).

    Article  Google Scholar 

  40. Brussaard, C. et al. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar. Ecol. Prog. Ser. 123, 259–271 (1995).

    Article  Google Scholar 

  41. Enke, T. N. et al. Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities. Curr. Biol. 29, 1528–1535.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Selander, E. et al. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc. Natl Acad. Sci. USA 112, 6395–6400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).

    Article  PubMed  Google Scholar 

  44. Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2017).

    Article  PubMed  Google Scholar 

  45. Ankrah, N. Y. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saba, G. K., Steinberg, D. K. & Bronk, D. A. The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods. J. Exp. Mar. Biol. Ecol. 404, 47–56 (2011).

    Article  Google Scholar 

  48. Bayer, B. et al. Ammonia‐oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environ. Microbiol. 21, 4062–4075 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kujawinski, E. B. et al. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim. Cosmochim. Acta 73, 4384–4399 (2009).

    Article  CAS  Google Scholar 

  50. Schulz, S. & Dickschat, J. S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24, 814–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Wienhausen, G., Noriega-Ortega, B. E., Niggemann, J., Dittmar, T. & Simon, M. The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front. Microbiol. 8, 1985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ortega‐Retuerta, E. et al. Dissolved organic matter released by two marine heterotrophic bacterial strains and its bioavailability for natural prokaryotic communities. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15306 (2020).

  53. Kharbush, J. J. et al. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).

    Article  Google Scholar 

  54. Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142 (1992).

    Article  CAS  Google Scholar 

  57. Thor, P., Dam, H. G. & Rogers, D. R. Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquat. Microb. Ecol. 33, 279–288 (2003).

    Article  Google Scholar 

  58. Cole, J. J., Findlay, S. & Pace, M. L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).

    Article  Google Scholar 

  59. Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    Article  CAS  Google Scholar 

  60. Moran, M. A. et al. The ocean’s labile DOC supply chain. Limnol. Oceanogr. https://doi.org/10.1002/lno.12053 (2022).

  61. Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    Article  Google Scholar 

  62. Hollibaugh, J., Carruthers, A., Fuhrman, J. & Azam, F. Cycling of organic nitrogen in marine plankton communities studied in enclosed water columns. Mar. Biol. 59, 15–21 (1980).

    Article  CAS  Google Scholar 

  63. Keil, R. G. & Kirchman, D. L. Utilization of dissolved protein and amino acids in the northern Sargasso Sea. Aquat. Microb. Ecol. 18, 293–300 (1999).

    Article  Google Scholar 

  64. Boysen, A. K. et al. Particulate metabolites and transcripts reflect diel oscillations of microbial activity in the surface ocean. mSystems 6, e00896-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dawson, H. M. et al. Potential of temperature-and salinity-driven shifts in diatom compatible solute concentrations to impact biogeochemical cycling within sea ice. Elementa https://doi.org/10.1525/elementa.421 (2020).

  66. Durham, B. P. Deciphering metabolic currencies that support marine microbial networks. mSystems 6, e0076321 (2021).

    Article  PubMed  Google Scholar 

  67. Fiore, C. L., Longnecker, K., Kido Soule, M. C. & Kujawinski, E. B. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongatus CCMP 1631. Environ. Microbiol. 17, 3949–3963 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Durham, B. P. et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ. Microbiol. 19, 3500–3513 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 15, 762–773 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gebser, B., Thume, K., Steinke, M. & Pohnert, G. Phytoplankton‐derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. MicrobiologyOpen 9, e1014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heal, K. R. et al. Marine community metabolomes carry fingerprints of phytoplankton community composition. mSystems 6, e01334-20 (2020).

    Article  Google Scholar 

  73. Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000).

    Article  CAS  Google Scholar 

  74. Landa, M., Burns, A. S., Roth, S. J. & Moran, M. A. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 11, 2677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc. Natl Acad. Sci. USA 117, 27445–27455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Uchimiya, M., Schroer, W., Olofsson, M., Edison, A. S. & Moran, M. A. Diel investments in metabolite production and consumption in a model microbial system. ISME J. https://doi.org/10.1038/s41396-021-01172-w (2021).

  77. Mopper, K. & Lindroth, P. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis 1. Limnol. Oceanogr. 27, 336–347 (1982).

    Article  CAS  Google Scholar 

  78. Pomeroy, L. R., Macko, S., Ostrom, P. & Dunphy, J. The microbial food web in Arctic seawater: concentration of dissolved free amino acids and bacterial abundance and activity in the Arctic Ocean and in Resolute Passage. Mar. Ecol. Prog. Ser. 61, 31–40 (1990).

    Article  CAS  Google Scholar 

  79. Liu, Q., Lu, X. X., Tolar, B. B., Mou, X. Z. & Hollibaugh, J. T. Concentrations, turnover rates and fluxes of polyamines in coastal waters of the South Atlantic Bight. Biogeochemistry 123, 117–133 (2015).

    Article  CAS  Google Scholar 

  80. Nishibori, N., Yuasa, A., Sakai, M., Fujihara, S. & Nishio, S. Free polyamine concentrations in coastal seawater during phytoplankton bloom. Fish. Sci. 67, 79–83 (2001).

    Article  CAS  Google Scholar 

  81. Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).

    Article  CAS  Google Scholar 

  82. Borch, N. H. & Kirchmann, D. L. Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD. Mar. Chem. 57, 85–95 (1997).

    Article  CAS  Google Scholar 

  83. Ittekkot, V., Brockmann, U., Michaelis, W. & Degens, E. T. Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Mar. Ecol. Prog. Ser. 4, 299–305 (1981).

    Article  CAS  Google Scholar 

  84. Lau, W. W., Keil, R. G. & Armbrust, E. V. Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom. Appl. Environ. Microbiol. 73, 2440–2450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertrand, E. M. & Allen, A. E. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton. Front. Microbiol. 3, 375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gómez‐Consarnau, L. et al. Mosaic patterns of B‐vitamin synthesis and utilization in a natural marine microbial community. Environ. Microbiol. 20, 2809–2823 (2018).

    Article  PubMed  Google Scholar 

  87. Sanudo-Wilhelmy, S. A. et al. Multiple B-vitamin depletion in large areas of the coastal ocean. Proc. Natl Acad. Sci. USA 109, 14041–14045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kenney, G. E. et al. The biosynthesis of methanobactin. Science 359, 1411–1416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lhospice, S. et al. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci. Rep. 7, 17132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Button, D., Robertson, B., Gustafson, E. & Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis–Menten paradigm of microbial kinetics. Appl. Environ. Microbiol. 70, 5511–5521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Button, D., Robertson, B. R., Lepp, P. W. & Schmidt, T. M. A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl. Environ. Microbiol. 64, 4467–4476 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heal, K. R. et al. Determination of four forms of vitamin B12 and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 28, 2398–2404 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Mawji, E. et al. Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ. Sci. Technol. 42, 8675–8680 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio https://doi.org/10.1128/mBio.00036-12 (2012)

  97. Kazamia, E., Helliwell, K. E., Purton, S. & Smith, A. G. How mutualisms arise in phytoplankton communities: building eco‐evolutionary principles for aquatic microbes. Ecol. Lett. 19, 810–822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    Article  PubMed  Google Scholar 

  99. Vos, M. et al. Infochemicals structure marine, terrestrial and freshwater food webs: implications for ecological informatics. Ecol. Inf. 1, 23–32 (2006).

    Article  Google Scholar 

  100. Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Hmelo, L. & Van Mooy, B. A. Kinetic constraints on acylated homoserine lactone-based quorum sensing in marine environments. Aquat. Microb. Ecol. 54, 127–133 (2009).

    Article  Google Scholar 

  102. Schwartz, E. R., Poulin, R. X., Mojib, N. & Kubanek, J. Chemical ecology of marine plankton. Nat. Prod. Rep. 33, 843–860 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Nelson, C. E. & Wear, E. K. Microbial diversity and the lability of dissolved organic carbon. Proc. Natl Acad. Sci. USA 111, 7166–7167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amaral-Zettler, L. et al. in Life in the World’s Oceans: Diversity, Distribution and Abundance (ed. McIntyre, A.) 223–245 (Wiley, 2010).

  105. De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    Article  PubMed  Google Scholar 

  106. Hertkorn, N. et al. Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 80, 8908–8919 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Lechtenfeld, O. J., Hertkorn, N., Shen, Y., Witt, M. & Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 6, 6711 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Longnecker, K., Sievert, S. M., Sylva, S. P., Seewald, J. S. & Kujawinski, E. B. Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9° 50′ N. Org. Geochem. 125, 41–49 (2018).

    Article  CAS  Google Scholar 

  109. Romano, S. et al. Exo-metabolome of Pseudovibrio sp. FO-BEG1 analyzed by ultra-high resolution mass spectrometry and the effect of phosphate limitation. PLoS ONE 9, e96038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    Article  CAS  Google Scholar 

  113. Steen, A. D. et al. Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of ‘omics’. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00718 (2020).

  114. Becker, J. W. et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front. Microbiol. 5, 111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bouslimani, A., Sanchez, L. M., Garg, N. & Dorrestein, P. C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Prod. Rep. 31, 718–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Johnson, W. M. et al. Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnol. Oceanogr. 65, 111–127 (2020).

    Article  CAS  Google Scholar 

  117. Metwally, H., McAllister, R. G. & Konermann, L. Exploring the mechanism of salt-induced signal suppression in protein electrospray mass spectrometry using experiments and molecular dynamics simulations. Anal. Chem. 87, 2434–2442 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Kovacs, H., Moskau, D. & Spraul, M. Cryogenically cooled probes—a leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc. 2, 131–155 (2005).

    Article  Google Scholar 

  119. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).

    Article  CAS  Google Scholar 

  120. Koprivnjak, J.-F. et al. Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis–electrodialysis. Geochim. Cosmochim. Acta 73, 4215–4231 (2009).

    Article  CAS  Google Scholar 

  121. Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid‐phase extraction of dissolved organic matter (SPE‐DOM) from seawater. Limnol. Oceanogr. Meth. 6, 230–235 (2008).

    Article  CAS  Google Scholar 

  122. Johnson, W. M., Soule, M. C. K. & Kujawinski, E. B. Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol. Oceanogr. Meth. 15, 417–428 (2017).

    Article  Google Scholar 

  123. Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet Sci. Lett. 26, 61–68 (1975).

    Article  CAS  Google Scholar 

  124. Yamashita, Y. & Tanoue, E. Chemical characteristics of amino acid-containing dissolved organic matter in seawater. Org. Geochem. 35, 679–692 (2004).

    Article  CAS  Google Scholar 

  125. Zubkov, M. V., Tarran, G. A., Mary, I. & Fuchs, B. M. Differential microbial uptake of dissolved amino acids and amino sugars in surface waters of the Atlantic Ocean. J. Plankton Res. 30, 211–220 (2008).

    Article  CAS  Google Scholar 

  126. Unanue, M. et al. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Microb. Ecol. 37, 36–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Nissen, H., Nissen, P. & Azam, F. Multiphasic uptake of d-glucose by an oligotrophic marine bacterium. Mar. Ecol. Prog. Ser. 16, 155–160 (1984).

    Article  CAS  Google Scholar 

  128. Pedler, B. E., Aluwihare, L. I. & Azam, F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc. Natl Acad. Sci. USA 111, 7202–7207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Giovannoni, S. J., Thrash, J. C. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Norris, N., Levine, N. M., Fernandez, V. I. & Stocker, R. Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLoS Comp. Biol. 17, e1009023 (2021).

    Article  CAS  Google Scholar 

  131. Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keil, R. G. & Kirchman, D. L. Dissolved combined amino acids—chemical form and utilization by marine bacteria. Limnol. Oceanogr. 38, 1256–1270 (1993).

    Article  CAS  Google Scholar 

  133. Mopper, K. et al. Determination of sugars in unconcentrated seawater and other natural waters by liquid chromatography and pulsed amperometric detection. Environ. Sci. Technol. 26, 133–138 (1992).

    Article  CAS  Google Scholar 

  134. Zakem, E. J., Cael, B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. USA 118, e2016896118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moran, M. A., Reisch, C. R., Kiene, R. P. & Whitman, W. B. Genomic insights into bacterial DMSP transformations. Ann. Rev. Mar. Sci. 4, 523–542 (2012).

    Article  PubMed  Google Scholar 

  136. Kiene, R. P. & Slezak, D. Low dissolved DMSP concentrations in seawater revealed by small‐volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Meth. 4, 80–95 (2006).

    Article  CAS  Google Scholar 

  137. Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  142. Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (1998).

    Article  Google Scholar 

  144. Longnecker, K. & Kujawinski, E. B. Mining mass spectrometry data: using new computational tools to find novel organic compounds in complex environmental mixtures. Org. Geochem. 110, 92–99 (2017).

    Article  CAS  Google Scholar 

  145. Ardenkjaer-Larsen, J. H. et al. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. 54, 9162–9185 (2015).

    Article  CAS  Google Scholar 

  146. Ramaswamy, V. et al. Microsample cryogenic probes: technology and applications. eMagRes https://doi.org/10.1002/9780470034590.emrstm1315 (2007)

  147. Edison, A. S. et al. NMR: unique strengths that enhance modern metabolomics research. Anal. Chem. 93, 478–499 (2020).

    Article  PubMed  Google Scholar 

  148. Anaraki, M. T. et al. NMR assignment of the in vivo Daphnia magna metabolome. Analyst 145, 5787–5800 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Qi, Y. et al. Absorption-mode: the next generation of Fourier transform mass spectra. Anal. Chem. 84, 2923–2929 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Liaghati Mobarhan, Y., Soong, R., Lane, D. & Simpson, A. J. In vivo comprehensive multiphase NMR. Mag. Res. Chem. 58, 427–444 (2020).

    Article  CAS  Google Scholar 

  151. Zhao, S., Li, H., Han, W., Chan, W. & Li, L. Metabolomic coverage of chemical-group-submetabolome analysis: group classification and four-channel chemical isotope labeling LC–MS. Anal. Chem. 91, 12108–12115 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Sogin, E. M., Puskas, E., Dubilier, N. & Liebeke, M. Marine metabolomics: measurement of metabolites in seawater by gas chromatography mass spectrometry. mSystems 4, e00638-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pontrelli, S. & Sauer, U. Salt-tolerant metabolomics for exometabolomic measurements of marine bacterial isolates. Anal. Chem. 93, 7164–7171 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Mayali, X., Weber, P. K., Mabery, S. & Pett-Ridge, J. Phylogenetic patterns in the microbial response to resource availability: amino acid incorporation in San Francisco Bay. PLoS ONE 9, e95842 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Thomas, F. et al. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. ISME J. 15, 3062–3075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE 7, e35314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Vasdekis, A. E. & Stephanopoulos, G. Review of methods to probe single cell metabolism and bioenergetics. Metab. Eng. 27, 115–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Baumeister, T., Vallet, M., Kaftan, F., Svatoš, A. & Pohnert, G. Live single-cell metabolomics with matrix-free laser/desorption ionization mass spectrometry to address microalgal physiology. Front. Plant Sci. 10, 172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527–538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Judge, M. T. et al. Continuous in vivo metabolism by NMR. Front. Mol. Biosci. 6, 26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gao, C. et al. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11, 1942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Szul, M. J., Dearth, S. P., Campagna, S. R. & Zinser, E. R. Carbon fate and flux in Prochlorococcus under nitrogen limitation. mSystems 4, e00254-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Nowinski, B. & Moran, M. A. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat. Microbiol. 6, 524–532 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Poretsky, R. S. et al. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific Subtropical Gyre. Environ. Microbiol. 11, 1358–1375 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Sowell, S. M. et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3, 93–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Lidbury, I., Murrell, J. C. & Chen, Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc. Natl Acad. Sci. USA 111, 2710–2715 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tang, K., Jiao, N., Liu, K., Zhang, Y. & Li, S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS ONE 7, e41204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  PubMed  Google Scholar 

  172. Reverter, M., Rohde, S., Parchemin, C., Tapissier-Bontemps, N. & Schupp, P. J. Metabolomics and marine biotechnology: coupling metabolite profiling and organism biology for the discovery of new compounds. Front. Mar. Sci. 7, 1062 (2020).

    Article  Google Scholar 

  173. Frischkorn, K. R., Rouco, M., Van Mooy, B. A. & Dyhrman, S. T. Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. ISME J. 11, 2090–2101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vorobev, A. et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ. Microbiol. 20, 3012–3030 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Becker, S. et al. Laminarin is a major molecule in the marine carbon cycle. Proc. Natl Acad. Sci. USA 117, 6599–6607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Glavinas, H. et al. Utilization of membrane vesicle preparations to study drug–ABC transporter interactions. Expert Opin. Drug Metab. Toxicol. 4, 721–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372.e23 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Chauvigné-Hines, L. M. et al. Suite of activity-based probes for cellulose-degrading enzymes. J. Am. Chem. Soc. 134, 20521–20532 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Baklouti, M., Diaz, F., Pinazo, C., Faure, V. & Quéguiner, B. Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Prog. Oceanogr. 71, 1–33 (2006).

    Article  Google Scholar 

  180. Kovač, Ž., Platt, T., Sathyendranath, S. & Lomas, M. Extraction of photosynthesis parameters from time series measurements of in situ production: Bermuda Atlantic Time-Series Study. Remote Sens. 10, 915 (2018).

    Article  Google Scholar 

  181. Mongin, M., Nelson, D. M., Pondaven, P., Brzezinski, M. A. & Tréguer, P. Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep Sea Res. I 50, 1445–1480 (2003).

    Article  CAS  Google Scholar 

  182. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Ofaim, S., Sulheim, S., Almaas, E., Sher, D. & Segrè, D. Dynamic allocation of carbon storage and nutrient-dependent exudation in a revised genome-scale model of Prochlorococcus. Front. Genet. 12, 91 (2021).

    Article  Google Scholar 

  185. Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. https://doi.org/10.1016/j.coisb.2021.04.001 (2021).

  186. Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. 7, 59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Skalnik, C. J. et al. Whole-colony modeling of Escherichia coli. Preprint at bioRxiv https://doi.org/10.1101/2021.04.27.441666 (2021).

  188. Reid, A. Incorporating Microbial Processes into Climate Models (American Academy of Microbiology, 2012).

  189. Nicholson, D. P., Stanley, R. H. & Doney, S. C. A phytoplankton model for the allocation of gross photosynthetic energy including the trade‐offs of diazotrophy. J. Geophys. Res. Biogeosci. 123, 1796–1816 (2018).

    Article  CAS  Google Scholar 

  190. Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).

    Article  PubMed  Google Scholar 

  191. Coles, V. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).

    Article  PubMed  Google Scholar 

  196. Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Saito, M. A. et al. Development of an Ocean Protein Portal for interactive discovery and education. J. Proteome Res. 20, 326–336 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Durán, C. et al. Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome. Nat. Commun. 12, 1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Erbilgin, O. et al. MAGI: a method for metabolite annotation and gene integration. ACS Chem. Biol. 14, 704–714 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat. Commun. 8, 1563 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Paoli, L. et al. Uncharted biosynthetic potential of the ocean microbiome. Preprint at bioRxiv https://doi.org/10.1101/2021.03.24.436479 (2021).

  207. Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. Preprint at bioRxiv https://doi.org/10.1101/2020.10.15.341214 (2021).

  208. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  Google Scholar 

  209. Acinas, S. G. et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 4, 604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Saito, M. A. et al. Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J. Proteome Res. 18, 1461–1476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chandler, C. et al. Effective management of ocean biogeochemistry and ecological data: the BCO-DMO story. In EGU General Assembly Conference Abstracts Vol. 14, 1258 (2012).

  213. Ducklow, H. W., Steinberg, D. K. & Buesseler, K. O. Upper ocean carbon export and the biological pump. Oceanography 14, 50–58 (2001).

    Article  Google Scholar 

  214. Siegel, D. A., DeVries, T., Doney, S. C. & Bell, T. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).

    Article  CAS  Google Scholar 

  215. Del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).

    Article  PubMed  Google Scholar 

  216. Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291, 2398–2400 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

    Article  CAS  Google Scholar 

  218. Brembu, T., Mühlroth, A., Alipanah, L. & Bones, A. M. The effects of phosphorus limitation on carbon metabolism in diatoms. Phil. Trans. R. Soc. B 372, 20160406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Liang, Y., Koester, J. A., Liefer, J. D., Irwin, A. J. & Finkel, Z. V. Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. ISME J. 13, 2415–2425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hennon, G. M., Hernández Limón, M. D., Haley, S. T., Juhl, A. R. & Dyhrman, S. T. Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton. Front. Microbiol. 8, 2547 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Shi, D. et al. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana. Limnol. Oceanogr. 60, 1805–1822 (2015).

    Article  Google Scholar 

  222. Taylor, A. G. et al. Sharp gradients in phytoplankton community structure across a frontal zone in the California Current ecosystem. J. Plankton Res. 34, 778–789 (2012).

    Article  CAS  Google Scholar 

  223. Marinov, I., Doney, S. & Lima, I. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7, 3941–3959 (2010).

    Article  Google Scholar 

  224. Becker, K. W. et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat. Commun. 9, 5179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Johnson, W. M., Soule, M. C. K. & Kujawinski, E. B. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME J. 10, 2304–2316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Matrai, P. & Keller, M. Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: intracellular variations. Mar. Biol. 119, 61–68 (1994).

    Article  CAS  Google Scholar 

  227. Thume, K. et al. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. Nature 563, 412–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991).

    Article  Google Scholar 

  229. Peironcely, J. E., Reijmers, T., Coulier, L., Bender, A. & Hankemeier, T. Understanding and classifying metabolite space and metabolite-likeness. PLoS ONE 6, e28966 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gifford, S. M., Sharma, S., Booth, M. & Moran, M. A. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J. 7, 281–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Poretsky, R. S., Sun, S., Mou, X. & Moran, M. A. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ. Microbiol. 12, 616–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. McCarren, J. et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc. Natl Acad. Sci. USA 107, 16420–16427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ziervogel, K. & Arnosti, C. Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate‐free seawater from the north‐eastern Gulf of Mexico. Environ. Microbiol. 10, 289–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cude, W. N. et al. The production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization in the marine Roseobacter Phaeobacter sp. strain Y4I. Appl. Environ. Microbiol. 78, 4771–4780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Edwards, B. R., Bidle, K. D. & Van Mooy, B. A. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: implications for the carbon cycle. Proc. Natl Acad. Sci. USA 112, 5909–5914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Gram, L., Grossart, H.-P., Schlingloff, A. & Kiørboe, T. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Seyedsayamdost, M. R., Case, R. J., Kolter, R. & Clardy, J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3, 331–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Teasdale, M. E., Liu, J., Wallace, J., Akhlaghi, F. & Rowley, D. C. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl. Environ. Microbiol. 75, 567–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  241. Ross, A. C., Gulland, L. E., Dorrestein, P. C. & Moore, B. S. Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform. ACS Synth. Biol. 4, 414–420 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Ziemert, N. et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl Acad. Sci. USA 111, E1130–E1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kiene, R. P. & Linn, L. J. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol. Oceanogr. 45, 849–861 (2000).

    Article  CAS  Google Scholar 

  244. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276, 1052–1058 (1997).

    Article  CAS  Google Scholar 

  245. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  CAS  Google Scholar 

  246. Curson, A. R. et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  248. Todd, J., Curson, A., Dupont, C., Nicholson, P. & Johnston, A. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ. Microbiol. 11, 1376–1385 (2009).

    Article  CAS  PubMed  Google Scholar 

  249. Todd, J. D. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Vila-Costa, M. et al. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314, 652–654 (2006).

    Article  PubMed  Google Scholar 

  251. Evans, C. et al. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).

    Article  Google Scholar 

  252. Bratbak, G. et al. Viral activity in relation to Emiliania huxleyi blooms: a mechanism of DMSP release? Mar. Ecol. Prog. Ser. 128, 133–142 (1995).

    Article  CAS  Google Scholar 

  253. Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. McParland, E. L. & Levine, N. M. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnol. Oceanogr. 64, 757–773 (2019).

    Article  CAS  Google Scholar 

  256. Varaljay, V. A. et al. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME J. 9, 1677–1686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review arose from discussions supported by the CIFAR and developed further with support from the Moore Foundation (5503 to M.A.M., E.B.K. and A.S.E.; 9335 to S.A.A.), the Simons Foundation (542391 to M.A.M.; 253417 to E.B.K.; 504183 to E.M.B.; 509034SCFY20 to R.B.; 721225 to S.T.D.; 687269 to A.M.E.; 542389 to N.M.L.; 345889 to A.E.S.; and 735079 to A.V.), the US NSF (OCE-1756105 to N.R.B.; Major Research Equipment DBI-1946970 to A.S.E.; OCE-1924554 to M.A.S.; CAREER DEB-1749544 to A.S.; OCE-BSF 1635070 to DS.; and OCE-1829831 to M.B.S.), the Paul M. Angell Family Foundation (to S.T.D.), and the Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-06159 to L.L.; RGPIN-2015-06078 to A.C.R.). This is NSF Center for Chemical Currencies of a Microbial Planet (C-CoMP) publication number 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed ideas. M.A.M., E.B.K. and W.F.S. wrote the manuscript with substantial input from all authors.

Corresponding authors

Correspondence to Mary Ann Moran or Elizabeth B. Kujawinski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Pieter Dorrestein, Manuel Liebeke and Bethanie Edwards for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, M.A., Kujawinski, E.B., Schroer, W.F. et al. Microbial metabolites in the marine carbon cycle. Nat Microbiol 7, 508–523 (2022). https://doi.org/10.1038/s41564-022-01090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01090-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology