Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells

Abstract

Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenicity patterns of four Candida species in the in vitro vaginal epithelial infection model.
Fig. 2: Dynamics of transcriptomic changes of the four Candida species investigated in this study at different time points.
Fig. 3: Transcriptome dynamics of vaginal epithelial cells on exposure to four Candida species.
Fig. 4: Candida species induce mitochondrial responses in vaginal epithelial cells.
Fig. 5: Role of mtDNA in the induction of type I IFN in vaginal epithelial cells.
Fig. 6: Type-I IFN signalling increases epithelial resistance and suppresses innate immune activation.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. All relevant data, including further image and processed data are available by request from the corresponding authors, with the restriction of data that would compromise the confidentiality of blood donors. Raw sequencing data have been deposited in the Sequence Read Archive under accession nos. SRR10279972SRR10280067. Mapped data from the four Candida species can be mined and browsed at Candidamine (http://candidamine.org/candidamine/begin.do); the gene read counts from all samples can be found in our GitHub page https://github.com/Gabaldonlab/Host-pathogen_interactions along with the data analysis scripts for results reproducibility. Publicly available datasets/databases used in the study can be accessed at: Ensembl (https://www.ensembl.org/index.html); RefSeq (https://www.ncbi.nlm.nih.gov/refseq/); CGOB (http://cgob.ucd.ie/); NCBI FTP site (https://www.ncbi.nlm.nih.gov/home/download/); CGD (http://www.candidagenome.org/); and Genome wide annotation for Human (https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html). Source data are provided with this paper.

Code availability

All transcriptome data analysis results, including figures, extended data and supplementary materials are fully reproducible using the scripts provided at our GitHub page https://github.com/Gabaldonlab/Host-pathogen_interactions.

References

  1. Mårdh, P.-A. et al. Facts and myths on recurrent vulvovaginal candidosis: a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int. J. STD AIDS 13, 522–539 (2002).

    Article  PubMed  Google Scholar 

  2. Fidel, P. L.Jr et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect. Immun. 72, 2939–2946 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosati, D., Bruno, M., Jaeger, M., Ten Oever, J. & Netea, M. G. Recurrent vulvovaginal candidiasis: an immunological perspective. Microorganisms 8, 144 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  4. Yano, J. et al. Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms, management and post-treatment outcomes. BMC Womens Health 19, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Makanjuola, O., Bongomin, F. & Fayemiwo, S. A. An update on the roles of non-albicans Candida species in vulvovaginitis. J. Fungi (Basel) 4, 121 (2018).

    Article  CAS  Google Scholar 

  6. Gabaldón, T., Naranjo-Ortíz, M. A. & Marcet-Houben, M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res. 16, fow064 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arastehfar, A. et al. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol. Rev. 43, 517–547 (2019).

    Article  Google Scholar 

  8. Meir, J. et al. Identification of Candida albicans regulatory genes governing mucosal infection. Cell Microbiol. 20, e12841 (2018).

    Article  PubMed  Google Scholar 

  9. Verma, A., Gaffen, S. L. & Swidergall, M. Innate immunity to mucosal Candida infections. J. Fungi (Basel) 3, 60 (2017).

    Article  Google Scholar 

  10. Moreno-Ruiz, E. et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell Microbiol. 11, 1179–1189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moyes, D. L. & Naglik, J. R. Mucosal immunity and Candida albicans infection. Clin. Dev. Immunol. 2011, 346307 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moyes, D. L. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8, 225–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naglik, J. R. & Moyes, D. Epithelial cell innate response to Candida albicans. Adv. Dent. Res. 23, 50–55 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naglik, J. R., Moyes, D. L., Wächtler, B. & Hube, B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 13, 963–976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, W. & Filler, S. G. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 12, 273–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hovhannisyan, H. & Gabaldón, T. Transcriptome sequencing approaches to elucidate host–microbe interactions in opportunistic human fungal pathogens. Curr. Top. Microbiol. Immunol. 422, 193–235 (2019).

    CAS  PubMed  Google Scholar 

  18. Amorim-Vaz, S. et al. RNA enrichment method for quantitative transcriptional analysis of pathogens in vivo applied to the fungus Candida albicans. mBio 6, e00942-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bruno, V. M. et al. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio 6, e00182-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, Y. et al. New signaling pathways govern the host response to C. albicans infection in various niches. Genome Res. 25, 679–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tierney, L. et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 3, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tóth, R. et al. Investigation of Candida parapsilosis virulence regulatory factors during host–pathogen interaction. Sci. Rep. 8, 1346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kämmer, P. et al. Survival strategies of pathogenic Candida species in human blood show independent and specific adaptations. mBio 11, e02435-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang, G. et al. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc. Natl Acad. Sci. USA 103, 12813–12818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richardson, J. P. et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect. Immun. 86, e00645-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Mohanty, A., Tiwari-Pandey, R. & Pandey, N. R. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J. Cell Commun. Signal. 13, 303–318 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pervolaraki, K. et al. Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathog. 14, e1007420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y., Zhou, Z. & Min, W. Mitochondria, oxidative stress and innate immunity. Front. Physiol. 9, 1487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fridman, J. S. & Lowe, S. W. Control of apoptosis by p53. Oncogene 22, 9030–9040 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smeekens, S. P. et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun. 4, 1342 (2013).

    Article  PubMed  Google Scholar 

  35. El-Diwany, R. et al. CMPK2 and BCL-G are associated with type 1 interferon-induced HIV restriction in humans. Sci. Adv. 4, eaat0843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobel, J. D. et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am. J. Obstet. Gynecol. 178, 203–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Casadevall, A. & Pirofski, L.-A. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jabra-Rizk, M. A. et al. Candida albicans pathogenesis: fitting within the host–microbe damage response framework. Infect. Immun. 84, 2724–2739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pirofski, L.-A. & Casadevall, A. The damage-response framework of microbial pathogenesis and infectious diseases. Adv. Exp. Med. Biol. 635, 135–146 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson, D., Naglik, J. R. & Hube, B. The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog. 12, e1005867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kearney, C. J., Randall, K. L. & Oliaro, J. DOCK8 regulates signal transduction events to control immunity. Cell. Mol. Immunol. 14, 406–411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu, E. Y. et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch. Dermatol. 148, 79–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. McGhee, S. A. et al. DOCK8 deletions and mutations are associated with the autosomal recessive hyper-IgE phenotype. J. Allergy Clin. Immunol. 125, AB356 (2010).

    Article  Google Scholar 

  45. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  47. Riedelberger, M. et al. Type I interferon response dysregulates host iron homeostasis and enhances Candida glabrata infection. Cell Host Microbe 27, 454–466.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Jaeger, M. et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur. J. Clin. Microbiol. Infect. Dis. 34, 963–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. del Fresno, C. et al. Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38, 1176–1186 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Kotredes, K. P., Thomas, B. & Gamero, A. M. The protective role of type I interferons in the gastrointestinal tract. Front. Immunol. 8, 410 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Munakata, K. et al. Importance of the interferon-α system in murine large intestine indicated by microarray analysis of commensal bacteria-induced immunological changes. BMC Genomics 9, 192 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 441, 106–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Pekmezovic, M., Mogavero, S., Naglik, J. R. & Hube, B. Host–pathogen interactions during female genital tract infections. Trends Microbiol. 27, 982–996 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Li, T., Liu, Z., Zhang, X., Chen, X. & Wang, S. Therapeutic effectiveness of type I interferon in vulvovaginal candidiasis. Microb. Pathog. 134, 103562 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Lírio, J. et al. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: a systematic review protocol. BMJ Open 9, e027489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grazioli, S. & Pugin, J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front. Immunol. 9, 832 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seth, R. B., Sun, L., Ea, C.-K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brokatzky, D. et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fang, C., Wei, X. & Wei, Y. Mitochondrial DNA in the regulation of innate immune responses. Protein Cell 7, 11–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, E. S. et al. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell Melanoma Res. 27, 1051–1062 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Plataki, M. et al. Mitochondrial dysfunction in aged macrophages and lung during primary Streptococcus pneumoniae infection is improved with pirfenidone. Sci. Rep. 9, 971 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ramond, E., Jamet, A., Coureuil, M. & Charbit, A. Pivotal role of mitochondria in macrophage response to bacterial pathogens. Front. Immunol. 10, 2461 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurihara, Y. et al. Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation. Cell. Microbiol. 21, e12962 (2019).

    Article  PubMed  Google Scholar 

  66. Käding, N. et al. Growth of Chlamydia pneumoniae is enhanced in cells with impaired mitochondrial function. Front. Cell. Infect. Microbiol. 7, 499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Syn, G., Anderson, D., Blackwell, J. M. & Jamieson, S. E. Toxoplasma gondii infection is associated with mitochondrial dysfunction in-vitro. Front. Cell. Infect. Microbiol. 7, 512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gao, Y. et al. Mitochondrial DNA leakage caused by Streptococcus pneumoniae hydrogen peroxide promotes type I IFN expression in lung cells. Front. Microbiol. 10, 630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, P.-H. et al. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res. 46, 4054–4071 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179–182 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Tavanti, A., Davidson, A. D., Gow, N. A., Maiden, M. C. & Odds, F. C. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 43, 284–292 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hernandez, R. & Rupp, S. Human epithelial model systems for the study of Candida infections in vitro: part II. Histologic methods for studying fungal invasion. Methods Mol. Biol. 470, 105–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Schaller, M., Zakikhany, K., Naglik, J. R., Weindl, G. & Hube, B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat. Protoc. 1, 2767–2773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wächtler, B., Wilson, D., Haedicke, K., Dalle, F. & Hube, B. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE 6, e17046 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y., Zhou, J. & White, K. P. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30, 301–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Hovhannisyan, H., Hafez, A., Llorens, C. & Gabaldón, T. CROSSMAPPER: estimating cross-mapping rates and optimizing experimental design in multi-species sequencing studies. Bioinformatics 36, 925–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Chan, F. K., Moriwaki, K. & De Rosa, M. J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 979, 65–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bronner, D. N. & O’Riordan, M. X. Measurement of mitochondrial DNA release in response to ER stress. Bio Protoc. 6, e1839 (2016).

    Article  PubMed  Google Scholar 

  82. Win, S., Than, T. A., Fernandez-Checa, J. C. & Kaplowitz, N. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis. 5, e989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bannwarth, S., Procaccio, V. & Paquis-Flucklinger, V. Rapid identification of unknown heteroplasmic mutations across the entire human mitochondrial genome with mismatch-specific Surveyor Nuclease. Nat. Protoc. 1, 2037–2047 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Gresnigt, M. S. et al. Neutrophil-mediated inhibition of proinflammatory cytokine responses. J. Immunol. 189, 4806–4815 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Picard, M., White, K. & Turnbull, D. M. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J. Appl. Physiol. (1985) 114, 161–171 (2013).

    Article  Google Scholar 

  86. Andrews, S. FastQC: a Quality Control Tool for High Throughput Sequence Data http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  87. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Hunt, S. E. et al. Ensembl variation resources. Database (Oxford) 2018, bay119 (2018).

    Article  Google Scholar 

  91. Skrzypek, M. S. et al. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  93. Maguire, S. L. et al. Comparative genome analysis and gene finding in Candida species using CGOB. Mol. Biol. Evol. 30, 1281–1291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlson, M. org.Hs.eg.db: Genome wide annotation for Human. R package version 3.10.0 https://www.bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html (2019).

  100. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P., H.H., E.I., J.O.P., T.G., G.B. and B.H. received funding from the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 642095 (OPATHY). B.H. also received support from the German Research Foundation within the Collaborative Research Centre/Transregio 124 FungiNet (project C1). M.S.G. was supported by the German Research Foundation Emmy Noether Programme (project no. 434385622/GR 5617/1-1). We acknowledge the support of the Spanish Ministry of Science, Innovation and Universities (grant no. PGC2018-099921-B-I00) to the European Molecular Biology Laboratory partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Catalunya. We thank C. Kämnitz from the Electron Microscopy Center in Jena for the sample preparation for TEM. The schematic models in Figs. 46 were created with images adapted from Servier Medical Art (Servier).

Author information

Authors and Affiliations

Authors

Contributions

M.P. performed all the laboratory experiments (except for TEM), analysed the data, wrote the manuscript and prepared the figures. H.H. performed all the bioinformatics analyses, wrote the manuscript and prepared the figures. E.I. and J.O.P. performed the infection experiments for RNA-seq and edited the manuscript. S.S.L. performed the growth curve and flow cytometry experiments and helped with the mtDNA depletion set-up, including the data analysis. T. Kalkreuter performed additional RT–qPCR experiments. S. Müller and T. Kamradt contributed to the additional mitochondrial phenotypic assays and data interpretation. E.S. and B.Q. performed the TEM experiments, analysed the data and edited the manuscript. M.S.G., S. Mogavero, S.B. and G.B. designed the experiments and edited the manuscript. B.H. and T.G. conceived and designed the study and wrote the manuscript.

Corresponding authors

Correspondence to Toni Gabaldón or Bernhard Hube.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Microbiology thanks Elaine Bignell, Robert Watson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overall experimental design of the current study.

a, Schematic representation of the experimental design. Each Candida species was co-cultivated with host cells. Controls included samples at 0 and 24 h for both host and yeasts alone. At the indicated time points of infection, fungal and host RNAs were independently extracted and subsequently combined (pooled) at a 2:3 fungus-to-host ratio into one sample for library preparation and sequencing. Sequencing data were mapped to a concatenated host and fungal reference genome. b, Schematic representation of the entire study including all samples. Each symbol corresponds to a sequenced sample (or technical replicates of the same sample). Host samples are depicted with circles; Candida samples are depicted with squares; the strategy for combining (pooling) human and fungal RNAs in the same sequencing library is shown with ovals surrounding the corresponding samples; technical replicates (that is the same sequencing library sequenced several times) are surrounded with dashed rectangles. Control samples are depicted in yellow; interacting host and fungal samples are depicted in blue; host samples interacting with non-viable fungal cells are depicted in purple. Each row indicates the samples for each human-yeast interaction experiment.

Extended Data Fig. 2 Distinct patterns of transcriptome profiles of the four Candida species upon interaction with human epithelial cells.

a, Distribution of fully shared, partially shared and species-specific differentially expressed (DE) genes across the course of infections. Numbers on bar plots indicate the percentage (%). b, Venn diagrams of DE genes (only 1-to-1 orthologs) in four Candida species at each time point. c, PCA biplot based on expression levels of orthologous genes across Candida species, demonstrating a species-specific stratification of transcriptomic profiles of the four fungal pathogens; Labels of the data points correspond to sample identifiers, where ‘reseq’ indicates that the sample was sequenced more than once (see Supplementary Table 1 for details).

Extended Data Fig. 3 Comparison of orthologous gene content similarities between co-expressed gene modules in different yeast species.

a, Comparison of C. albicans modules against modules of other species. b, Comparison of C. glabrata modules against modules of other species. c Comparison of C. parapsilosis modules against modules of other species. d, Comparison of C. tropicalis modules against modules of other species. Each box represents a module of a given species (reference module); the title of a box represents the reference module name. Each reference module is compared with all modules of other three species, and the modules of other species with the highest similarity to the reference module are plotted with horizontal bars, representing level of similarity (in %). Labels of the horizontal bars indicate <species name > _<module name > . ‘calb’ denotes C. albicans, ‘cglab’ - C. glabrata, ‘cpar’ - C. parapsilosis, ‘ctrop’ - C. tropicalis. The level of similarity refers to the fraction (in %) of shared one-to-one orthologous genes between two given modules, defined as the intersection of gene lists of orthologs of two modules divided by the union of these gene lists.

Extended Data Fig. 4 Infection-specific differentially expressed (DE) genes of Candida species.

a, Venn diagrams indicating similarities and differences of fungal DE* genes in culture medium only (control) and in response to epithelial cells (infection). *To identify infection-specific genes with a higher stringency, we applied filters of |log2 fold change | >0 and padj < 0.01. For the downstream analysis of identified genes, we used a filtering of |log2 fold change | > 1.5 and padj < 0.01 for consistency with other results. Differential expression analysis was done using DESeq2 v. 1.26.0 and comparisons against time point 0 were done using the two-sided Wald test. b, Distribution of infection-specific fungal genes across the studied Candida pathogens. Bar plots demonstrate the distribution of partially shared, fully shared, and species-specific genes. Numbers on bar plots indicate the percentage (%). Venn diagrams depict numbers of fully shared genes (1-to-1 orthologs) across species.

Extended Data Fig. 5 Candida species induce type I interferon signalling independently of apoptosis.

The proportion of healthy, necrotic, and apoptotic vaginal epithelial cells (ECs) 3 and 24 hours post-infection (hpi) with Candida in (a) A431 vaginal ECs used throughout this study and (b) primary vaginal ECs. Treatment with 1.2 µM staurosporine was used as a positive control. c, Mitochondrial membrane potential change of primary vaginal ECs at 1 hpi, positive control CCCP 100 μM. d, Relative expression (RT-qPCR) of selected Interferon-Stimulated Genes (ISGs) in C. albicans-infected ECs where apoptosis was induced with 1.2 µM staurosporine at 3 hpi. All values are presented as mean ± SD of n = 3 independent experiments. Statistical significance is indicated as: *, p ≤ 0.05; ***, p ≤ 0.001; ***, p ≤ 0.0001 (one-way ANOVA with Dunnett’s multiple comparisons test (c-d).; ‘calb’ denotes C. albicans, ‘cglab’ - C. glabrata, ‘cpar’ - C. parapsilosis, ‘ctrop’ - C. tropicalis.

Source data

Extended Data Fig. 6 Human transcriptome profiles response to fungal damage.

a, Levels of LDH release by epithelial cells upon the damage by four fungal pathogens 24 hpi. All values are presented as mean ± SD of n = 3 independent experiments. b, PCA plot of human samples interacting with non-viable and viable fungal species, including C. albicans ece1Δ/Δ. The plot is obtained using the RUVg function of RUVseq with k = 1 (see Extended Data Fig. 7 for plots with alternative k values). Labels of the data points correspond to sample identifiers, where ‘reseq’ indicates that the sample was sequenced more than once (see Supplementary Table 1 for details). ‘non-viable’ indicates host samples interacting with non-viable fungal cells; ‘ece1Δ/Δ’ indicates host samples interacting with C. albicans ece1Δ/Δ.

Source data

Extended Data Fig. 7 Human transcriptome response assessed with different parameters of batch effect correction.

PCA plots of human samples interacting with fungal cells obtained using k = 0, 1, 2, 3 values of RUVseq package for batch effect correction. Labels of the data points correspond to sample identifiers, where ‘reseq’ indicates that the sample was sequenced more than once (see Supplementary Table 1 for details). ‘non-viable’ indicates host samples interacting with non-viable fungal cells; ‘ece1Δ/Δ’ indicates host samples interacting with C. albicans ece1Δ/Δ.

Extended Data Fig. 8 Applied gating strategies across flow cytometry experiments for epithelial cells.

a, A431 cells (linked to Fig. 4e) and (b) primary vaginal cells (linked to Extended Data Fig. 6c). First, 104 events were analyzed based on their side scatter area (SSC-A) vs. forward scatter area (FSC-A). For further analysis, single cells were selected based on forward scatter height (FSC-H) vs. forward scatter area (FSC-A). MitoTracker® Deep Red FM signal was measured using detection channel Alexa 647-A. The unstained population was taken as a reference to determine the median fluoresce intensity of all samples (depicted as histogram Alexa 647-A- and Alexa 647-A+). The ratio from the median intensity of the stained/uninfected cells and unstained/uninfected cells was used as a reference to obtain the results of the infected samples shown in the manuscript figures.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Study design, general information, sequencing and read mapping statistics of all analysed samples. Supplementary Table 2. Primers used in this study.

Supplementary Files 1–4

Supplementary File 1. Output of Crossmapper software for C. albicans and the host. Supplementary File 2. Output of Crossmapper software for C. glabrata and the host. Supplementary File 3. Output of Crossmapper software for C. parapsilosis and the host. Supplementary File 4. Output of Crossmapper software for C. tropicalis and the host.

Supplementary File 5

Differential gene expression analysis of C. albicans and the host.

Supplementary File 6

Differential gene expression analysis of C. glabrata and the host.

Supplementary File 7

Differential gene expression analysis of C. parapsilosis and the host.

Supplementary File 8

Differential gene expression analysis of C. tropicalis and the host.

Supplementary File 9

Gene Ontology enrichment analysis for all the data.

Supplementary File 10

Information on coexpressed modules between the host and the studied Candida species.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekmezovic, M., Hovhannisyan, H., Gresnigt, M.S. et al. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol 6, 643–657 (2021). https://doi.org/10.1038/s41564-021-00875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-021-00875-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing