Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission

Abstract

Antimicrobial resistance (AMR) is a growing public health challenge that is expected to disproportionately burden lower- and middle-income countries (LMICs) in the coming decades. Although the contributions of human and veterinary antibiotic misuse to this crisis are well-recognized, environmental transmission (via water, soil or food contaminated with human and animal faeces) has been given less attention as a global driver of AMR, especially in urban informal settlements in LMICs—commonly known as ‘shanty towns’ or ‘slums’. These settlements may be unique hotspots for environmental AMR transmission given: (1) the high density of humans, livestock and vermin living in close proximity; (2) frequent antibiotic misuse; and (3) insufficient drinking water, drainage and sanitation infrastructure. Here, we highlight the need for strategies to disrupt environmental AMR transmission in urban informal settlements. We propose that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections and preventing antibiotic misuse. We also suggest that additional research is directed towards developing economic and legal incentives for evaluating and implementing water and waste infrastructure in these settings. Given that almost 90% of urban population growth will occur in regions predicted to be most burdened by the AMR crisis, there is an urgent need to build effective, evidence-based policies that could influence massive investments in the built urban environment in LMICs over the next few decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Environmental transmission of AMR in urban informal settlements.
Fig. 2: Ways improved water and sanitation services could reduce the burden of AMR in LMIC settings.

Data availability

The Demographic Health Survey (DHS) datasets that support the findings of Table 1 are available from the DHS Program (https://dhsprogram.com/data/available-datasets.cfm).

Code availability

The code used to generate the country-level antibiotic consumption estimates presented in Table 1 is publicly available on Github via Zenodo (https://doi.org/10.5281/zenodo.3802123).

References

  1. 1.

    Population Living in Slums (% of Urban Population) (World Bank, 2014); https://data.worldbank.org/indicator/en.pop.slum.ur.zs

  2. 2.

    World Cities Report 2016: Urbanization and Development – Emerging Futures. (UN-Habitat, 2016).

  3. 3.

    Riley, L. W., Ko, A. I., Unger, A. & Reis, M. G. Slum health: diseases of neglected populations. BMC Int. Health Hum. Rights 7, 2 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kit, O., Lüdeke, M. & Reckien, D. Defining the bull’s eye: satellite imagery-assisted slum population assessment in Hyderabad, India. Urban Geogr. 34, 413–424 (2013).

    Article  Google Scholar 

  5. 5.

    Dyson, P. Slum tourism: Representing and interpreting ‘reality’ in Dharavi, Mumbai. Tour. Geogr. 14, 254–274 (2012).

    Article  Google Scholar 

  6. 6.

    Veljanovski, T., Kanjir, U., Pehani, P., Otir, K. & Kovai, P. in Remote Sensing – Applications (ed. Escalante, B.) Ch. 18, 407–434 (InTech, 2012).

  7. 7.

    Angeles, G. et al. The 2005 census and mapping of slums in Bangladesh: design, select results and application. Int. J. Health Geogr. 8, 32 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    2010 Demographic Profile Data: New York County (Manhattan Borough), New York (United States Census Bureau, 2010); https://www.census.gov/quickfacts/newyorkcountymanhattanboroughnewyork

  9. 9.

    State of World Population 2007: Unleashing the Potential of Urban Growth (United Nations Population Fund, 2007).

  10. 10.

    Prasad, A., Gray, C. B., Ross, A. & Kano, M. Metrics in urban health: current developments and future prospects. Annu. Rev. Public Health 37, 113–133 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    O’Neill, J. (ed.) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (United Kingdom Review on Antimicrobial Resistance, 2016).

  12. 12.

    Woerther, P.-L., Andremont, A. & Kantele, A. Travel-acquired ESBL-producing Enterobacteriaceae: impact of colonization at individual and community level. J. Travel Med. 24, S29–S34 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Wilson, M. E. & Chen, L. H. NDM-1 and the role of travel in its dissemination. Curr. Infect. Dis. Rep. 14, 213–226 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ruppé, E., Andremont, A. & Armand-Lefèvre, L. Digestive tract colonization by multidrug-resistant Enterobacteriaceae in travellers: an update. Travel Med. Infect. Dis. 21, 28–35 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Das, J. & Hammer, J. Location, location, location: residence, wealth, and the quality of medical care in Delhi, India. Health Aff. 26, w338–w351 (2007).

    Article  Google Scholar 

  16. 16.

    Institute of Medicine (US) Committee on Health Literacy in Health Literacy: A Prescription to End Confusion (eds. Nielsen-Bohlman, L., Panzer, A. et al.) Ch. 2 (National Academies Press, 2004).

  17. 17.

    Kehinde, O. O. & Ogunnowo, B. E. The pattern of antibiotic use in an urban slum in Lagos State, Nigeria. West Afr. J. Pharm. 24, 49–57 (2013).

    Google Scholar 

  18. 18.

    Kenya Demographic and Health Survey 2015 (Dataset). KEKR72FL.DTA (General Directorate of Statistics (Kenya), Ministry of Finance (Kenya) and ICF, 2015); https://dhsprogram.com/Data/

  19. 19.

    Lipsitch, M. & Samore, M. H. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg. Infect. Dis. 8, 347–354 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Morgan, D. J., Okeke, I. N., Laxminarayan, R., Perencevich, E. N. & Weisenberg, S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect. Dis. 11, 692–701 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Shehadeh, M. et al. Knowledge, attitudes and behavior regarding antibiotics use and misuse among adults in the community of Jordan. A pilot study. Saudi Pharm. J. 20, 125–133 (2012).

    Article  PubMed  Google Scholar 

  22. 22.

    Nepal, A., Hendrie, D., Robinson, S. & Selvey, L. A. Knowledge, attitudes and practices relating to antibiotic use among community members of the Rupandehi District in Nepal. BMC Public Health 19, 1558 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Miller, R. & Goodman, C. Performance of retail pharmacies in low- and middle-income Asian settings: a systematic review. Health Policy Plan. 31, 940–953 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Nair, M. et al. “Without antibiotics, I cannot treat”: a qualitative study of antibiotic use in Paschim Bardhaman district of West Bengal, India. PLoS ONE 14, e0219002 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Ozawa, S. et al. Prevalence and estimated economic burden of substandard and falsified medicines in low- and middle-income countries: a systematic review and meta-analysis. JAMA Netw. Open 1, e181662 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Chandel, D. S. et al. Extended-spectrum beta-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings. J. Med. Microbiol. 60, 500–507 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Breiman, R. F. et al. Population-based incidence of typhoid fever in an urban informal settlement and a rural area in Kenya: implications for typhoid vaccine use in Africa. PLoS ONE 7, e29119 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Souza, T. B. et al. High prevalence of antimicrobial drug-resistant diarrheagenic Escherichia coli in asymptomatic children living in an urban slum. J. Infect. 59, 247–251 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Ferraro, C. F. et al. Household crowding, social mixing patterns and respiratory symptoms in seven countries of the African meningitis belt. PLoS ONE 9, e101129 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Akinwale, O. P. et al. Living conditions and public health status in three urban slums of Lagos, Nigeria. South East Asia J. Public Health 3, 36–41 (2014).

    Article  Google Scholar 

  32. 32.

    Bird, J., Montebruno, P. & Regan, T. Life in a slum: understanding living conditions in Nairobi’s slums across time and space. Oxf. Rev. Econ. Policy 33, 496–520 (2017).

    Article  Google Scholar 

  33. 33.

    Mitlin, D., Beard, V. A., Satterthwaite, D. & Du, J. (eds) Unaffordable and Undrinkable: Rethinking Urban Water Access in the Global South (World Resources Institute, 2019).

  34. 34.

    Katukiza, A. Y. et al. Sustainable sanitation technology options for urban slums. Biotechnol. Adv. 30, 964–978 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kumpel, E. & Nelson, K. L. Intermittent water supply: prevalence, practice, and microbial water quality. Environ. Sci. Technol. 50, 542–553 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kumpel, E. & Nelson, K. L. Comparing microbial water quality in an intermittent and continuous piped water supply. Water Res. 47, 5176–5188 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Howard, G. & Bartram, J. (eds) Domestic Water Quantity, Service Level and Health (World Health Organization, 2003).

  38. 38.

    Unger, A. & Riley, L. W. Slum health: from understanding to action. PLoS Med. 4, 1561–1566 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Ross, A. G. P., Zaman, K. & Clemens, J. D. Health concerns in urban slums: a glimpse of things to come? JAMA 321, 1973–1974 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Longini, I. M. Jr. et al. Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J. Infect. Dis. 186, 246–251 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Graham, J. P., Eisenberg, J. N. S., Trueba, G., Zhang, L. & Johnson, T. J. Small-scale food animal production and antimicrobial resistance: mountain, molehill, or something in-between? Environ. Health Persp. 125, (2017).

  42. 42.

    Muloi, D. et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J. Glob. Health 9, 010412 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Wall, B. A. et al. (eds) Drivers, Dynamics, and Epidemiology of Antimicrobial Resistance in Animal Production (Food and Agriculture Organization of the United Nations, 2016).

  44. 44.

    Nisha, A. Antibiotic residues – a global health hazard. Vet. World 2, 375–377 (2008).

    Article  Google Scholar 

  45. 45.

    Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365, eaaw1944 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Okeke, I. N. et al. Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infect. Dis. 5, 481–493 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kimani-Murage, E. W. & Ngindu, A. M. Quality of water the slum dwellers use: the case of a Kenyan slum. J. Urban Health 84, 829–838 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    O’Neill, J. (ed.) Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. (United Kingdom Review on Antimicrobial Resistance, 2015).

  49. 49.

    Pruden, A. et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 121, 878–885 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. Lond. B 369, 20130571 (2014).

    Article  CAS  Google Scholar 

  51. 51.

    Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, fux053 (2018).

  52. 52.

    Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Lundborg, C. S. & Tamhankar, A. J. Antibiotic residues in the environment of South East Asia. BMJ 358, j2440 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Ishii, S. et al. Factors controlling long-term survival and growth of naturalized Escherichia coli populations in temperate field soils. Microbes Environ. 25, 8–14 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Naganandhini, S., Kennedy, Z. J., Uyttendaele, M. & Balachandar, D. Persistence of pathogenic and non-pathogenic Escherichia coli strains in various tropical agricultural soils of India. PLoS ONE 10, e0130038 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Montealegre, M. C. et al. Risk factors for detection, survival, and growth of antibiotic-resistant and pathogenic Escherichia coli in household soils in rural Bangladesh. Appl. Environ. Microbiol. 84, e01978-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Penakalapati, G. et al. Exposure to animal feces and human health: a systematic review and proposed research priorities. Environ. Sci. Technol. 51, 11537–11552 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Barreiro, C., Albano, H., Silva, J. & Teixeira, P. Role of flies as vectors of foodborne pathogens in rural areas. ISRN Microbiol. 2013, 718780 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Lindeberg, Y. L. et al. Can Escherichia coli fly? The role of flies as transmitters of E. coli to food in an urban slum in Bangladesh. Trop. Med. Int. Health 23, 2–9 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Fuhrimann, S. et al. Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala, Uganda. Microb. Risk Anal. 4, 16–28 (2016).

    Article  Google Scholar 

  61. 61.

    Mberu, B. U., Haregu, T. N., Kyobutungi, C. & Ezeh, A. C. Health and health-related indicators in slum, rural, and urban communities: a comparative analysis. Glob. Health Action 9, 33163 (2016).

    Article  PubMed  Google Scholar 

  62. 62.

    Fink, G., Günther, I. & Hill, K. Slum residence and child health in developing countries. Demography 51, 1175–1197 (2014).

    Article  PubMed  Google Scholar 

  63. 63.

    Rashid, H., Hunt, L. M. & Haider, W. Urban flood problems in Dhaka, Bangladesh: slum residents’ choices for relocation to flood-free areas. Environ. Manage. 40, 95–104 (2007).

    Article  PubMed  Google Scholar 

  64. 64.

    Cissé, A. & Mendy, P. Spatial relationship between floods and poverty: the case of region of Dakar. Theor. Econ. Lett. 8, 256–281 (2018).

    Article  Google Scholar 

  65. 65.

    Bangalore, M., Smith, A. & Veldkamp, T. Exposure to floods, climate change, and poverty in Vietnam. EconDisCliCha. 3, 79–99 (2019).

    Article  Google Scholar 

  66. 66.

    Douglas, I. et al. Unjust waters: climate change, flooding and the urban poor in Africa. Environ. Urban. 20, 187–205 (2008).

    Article  Google Scholar 

  67. 67.

    Yu, P. et al. Elevated levels of pathogenic indicator bacteria and antibiotic resistance genes after Hurricane Harvey’s flooding in Houston. Environ. Sci. Technol. Lett. 5, 481–486 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Kapoor, V., Gupta, I., Pasha, A. B. M. T. & Phan, D. Real-time quantitative PCR measurements of fecal indicator bacteria and human-associated source tracking markers in a Texas river following Hurricane Harvey. Environ. Sci. Technol. Lett. 5, 322–328 (2018).

    CAS  Article  Google Scholar 

  69. 69.

    Presley, S. M. et al. Assessment of pathogens and toxicants in New Orleans, LA following Hurricane Katrina. Environ. Sci. Technol. 40, 468–474 (2006).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Berendes, D. M. et al. Associations between open drain flooding and pediatric enteric infections in the MAL-ED cohort in a low-income, urban neighborhood in Vellore, India. BMC Public Health 19, 926 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Fowler, A. M. & Hennessy, K. J. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat. Hazards 11, 283–303 (1995).

    Article  Google Scholar 

  72. 72.

    Saleem, A. F., Qamar, F. N., Shahzad, H., Qadir, M. & Zaidi, A. K. M. Trends in antibiotic susceptibility and incidence of late-onset Klebsiella pneumoniae neonatal sepsis over a six-year period in a neonatal intensive care unit in Karachi, Pakistan. Int. J. Infect. Dis. 17, e961–e965 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Musicha, P. et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. Lancet Infect. Dis. 17, 1042–1052 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Roy, M. P. et al. Changing trend in bacterial etiology and antibiotic resistance in sepsis of intramural neonates at a tertiary care hospital. J. Postgrad. Med. 63, 162–168 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Luby, S. P. Urban slums: a supportive ecosystem for typhoidal Salmonellae. J. Infect. Dis. 218, S250–S254 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Eliopoulos, G. M., Cosgrove, S. E. & Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis 36, 1433–1437 (2003).

    Article  Google Scholar 

  77. 77.

    Alsan, M. et al. Poverty and community-acquired antimicrobial resistance with extended-spectrum β-lactamase-producing organisms, Hyderabad, India. Emerg. Infect. Dis. 24, 1490–1496 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Gelband, H. & Delahoy, M. (eds) Policies to Address Antibiotic Resistance in Low- and Middle-Income Countries (Center for Disease Dynamics, Economics & Policy, 2014).

  79. 79.

    Transforming our World: the 2030 Agenda for Sustainable Development. (United Nations General Assembly, 2015).

  80. 80.

    Subbaraman, R. et al. The social ecology of water in a Mumbai slum: failures in water quality, quantity, and reliability. BMC Public Health 13, 173 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Desai, R., McFarlane, C. & Graham, S. The politics of open defecation: informality, body, and infrastructure in Mumbai. Antipode 47, 98–120 (2015).

    Article  Google Scholar 

  82. 82.

    Araya, P., Hug, J., Joy, G., Oschmann, F. & Rubinstein, S. (eds) The Impact of Water and Sanitation on Diarrhoeal Disease Burden and Over-Consumption of Antibiotics (United Kingdom Review on Antimicrobial Resistance, 2016).

  83. 83.

    Levels & Trends in Child Mortality Report 2018 (United Nations Inter-agency Group for Child Mortality Estimation, 2018).

  84. 84.

    Pickering, A. J. et al. Effect of in-line drinking water chlorination at the point of collection on child diarrhoea in urban Bangladesh: a double-blind, cluster-randomised controlled trial. Lancet Glob. Health 7, e1247–e1256 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Manohar, P. et al. The distribution of carbapenem-and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. J. Med. Microbiol. 66, 874–883 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    2017 UN World Water Development Report, Wastewater: The Untapped Resource (United Nations World Water Assessment Programme, 2017).

  87. 87.

    Fuhrmeister, E. R., Schwab, K. J. & Julian, T. R. Estimates of nitrogen, phosphorus, biochemical oxygen demand, and fecal coliforms entering the environment due to inadequate sanitation treatment technologies in 108 low and middle income countries. Environ. Sci. Technol. 49, 11604–11611 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Newton, R. J. et al. Sewage reflects the microbiomes of human populations. mBio 6, e02574-14 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    De Boeck, H. et al. ESBL-positive Enterobacteria isolates in drinking water. Emerg. Infect. Dis. 18, 1019–20 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Muhonja, C., Christabel, M., Budambula, N., Kiiru, J. & Kariuki, S. Characterization of antibiotic resistance in environmental enteric pathogens from Kibera slum in Nairobi-Kenya. J. Bacteriol. Res. 4, 46–54 (2012).

    Article  CAS  Google Scholar 

  93. 93.

    Talukdar, P. K. et al. Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PLoS ONE 8, e61090 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Ercumen, A. et al. Upgrading a piped water supply from intermittent to continuous delivery and association with waterborne illness: a matched cohort study in urban India. PLoS Med. 12, e1001892 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Adane, M., Mengistie, B., Medhin, G., Kloos, H. & Mulat, W. Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ehtiopia: a matched case-control study. PLoS ONE 12, e0181516 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Pulling Together to Beat Superbugs: Knowledge and Implementation Gaps in Addressing Antimicrobial Resistance (World Bank Group, 2019).

  97. 97.

    Citywide Inclusive Sanitation: A Call to Action (World Bank Group et al., 2016).

  98. 98.

    Sanganyado, E. & Gwenzi, W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci. Total Environ. 669, 785–797 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Manaia, C. M. et al. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Ashbolt, N., Pruden, A., Miller, J., Riquelme, M. V. & Maile-Moskowitz, A. in Global Water Pathogen Project (eds. Pruden, A., Ashbolt, N. & Miller, J.) Part 3 (Michigan State University, 2019).

  101. 101.

    Bürgmann, H. et al. Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol. Ecol. 94, fiy101 (2018).

  102. 102.

    Clasen, T. & Edmondson, P. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int. J. Hyg. Environ. Health 209, 173–181 (2006).

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    He, H. et al. Degradation and deactivation of bacterial antibiotic resistance genes during exposure to free chlorine, monochloramine, chlorine dioxide, ozone, ultraviolet light, and hydroxyl radical. Environ. Sci. Technol. 53, 2013–2026 (2019).

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Pickering, A. J. et al. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized control trial. PLoS ONE 10, e0118397 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Graham, J. P. & Polizzotto, M. L. Pit latrines and their impacts on groundwater quality: a systematic review. Environ. Health Perspect. 121, 521–530 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Evaluating the Potential of Container-Based Sanitation (World Bank Water Global Practice, 2019).

  107. 107.

    Tilmans, S. et al. Container-based sanitation: assessing costs and effectiveness of excreta management in Cap Haitien, Haiti. Environ. Urban. 27, 89–104 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Auerbach, D. in Broken Pumps and Promises: Incentivizing Impact in Environmental Health (ed. Thomas, E. A.) 211–216 (Springer, 2016).

  109. 109.

    Hennigs, J. et al. Field testing of a prototype mechanical dry toilet flush. Sci. Total Environ. 668, 419–431 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Article  PubMed  Google Scholar 

  111. 111.

    Barreto, M. L. et al. Effect of city-wide sanitation programme on reduction in rate of childhood diarrhoea in northeast Brazil: assessment by two cohort studies. Lancet 370, 1622–1628 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Pickering, A. J. et al. Effects of single and integrated water, sanitation, handwashing, and nutrition interventions on child soil-transmitted helminth and Giardia infections: a cluster-randomized controlled trial in rural Kenya. PLoS Med. 16, e1002841 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team et al. The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial: rationale, design, and methods. Clin. Infect. Dis. 61, S685–S702 (2015).

  114. 114.

    Luby, S. P. et al. Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. Lancet Glob. Health 6, e302–e315 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Matheu, J., Aidara-Kane, A. & Andremont, A. The ESBL tricycle AMR surveillance project: a simple, one health approach to global surveillance. AMR Control: Overcoming Global Antimicrobial Resistance http://resistancecontrol.info/2017/the-esbl-tricycle-amr-surveillance-project-a-simple-one-health-approach-to-global-surveillance/ (2017).

  116. 116.

    Huijbers, P. M. C., Flach, C. F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach (World Health Organization, 2017).

  118. 118.

    Omulo, S. et al. Evidence of superficial knowledge regarding antibiotics and their use: Results of two cross-sectional surveys in an urban informal settlement in Kenya. PLoS ONE 12, e0185827 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Wang, H. et al. Predictors of urinary antibiotics in children of Shanghai and health risk assessment. Environ. Int. 121, 507–514 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Larsson, D. G. J. et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 117, 132–138 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Bangladesh Demographic and Health Survey 2011 (National Institute of Population Research and Training (NIPORT), Mitra and Associates, and ICF International, 2013); http://dhsprogram.com/pubs/pdf/FR265/FR265.pdf

  122. 122.

    India National Family Health Survey NFHS-4 2015-16, India [Dataset] IAKR74FL.DTA (International Institute for Population Sciences - IIPS/India and ICF, 2017); https://dhsprogram.com/pubs/pdf/FR339/FR339.pdf

  123. 123.

    Kenya Demographic and Health Survey 2014 [Dataset] KEKR72FL.DTA (Kenya National Bureau of Statistics; Ministry of Health, Kenya; National AIDS Control Council, Kenya; Kenya Medical Research Institute; National Council for Population and Development, Kenya; and the DHS Program, ICF International (2015); http://dhsprogram.com/pubs/pdf/FR308/FR308.pdf

  124. 124.

    Perú Encuesta Demográfica y de Salud Familiar - ENDES 2012 [Dataset] PEKR6IFL.DTA (Instituto Nacional de Estadística e Informática, 2012); http://dhsprogram.com/pubs/pdf/FR284/FR284.pdf

  125. 125.

    Rogawski, E. T. et al. Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bull. World Health Organ. 95, 49–61 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

M.L.N. and M.C.M. were supported by the Thrasher Research Foundation during the writing of this manuscript. Unpublished survey data from Nairobi presented in Table 1 was collected by a project funded by the Bill and Melinda Gates Foundation (no. OPP1200651). Unpublished survey data from Peru was collected by a project funded by the National Institutes of Health (R01 AI108695-01A1). We thank the study respondents for their participation.

Author information

Affiliations

Authors

Contributions

A.J.P., S.J.M., T.R.J. and M.L.N. developed the concept. R.H.G., M.J.P., M.S., S.M.N., J.S. and A.J.P. collected the data. A.J.P., S.J.M., T.R.J. and M.L.N. wrote the first draft. A.J.P., T.R.J., J.S. and M.L.N. designed the figures. M.L.N., S.J.M., M.C.M., R.H.G., M.J.P., M.S., P.T., S.M.N., J.K., J.S., M.A.I., T.R.J. and A.J.P. contributed to the literature search and reviewed the manuscript at all stages.

Corresponding author

Correspondence to Amy J. Pickering.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadimpalli, M.L., Marks, S.J., Montealegre, M.C. et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol 5, 787–795 (2020). https://doi.org/10.1038/s41564-020-0722-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing